Zusammenfassung der Ressource
Machine Learning
- Supervised Learning
- Vapnik-Chervonenkis (VC) Dimension
- Classification
- Bayesian Decision Theory
Anmerkungen:
- P(C|x) = P(C) * p(x|C) / p(x)
- posterior p(C | x)
Anmerkungen:
- = prior * likelihood / evidence
- prior P(C = i)
Anmerkungen:
- probability of being class i
- likelihood p(x|C)
Anmerkungen:
- conditional probability,
probability of event x given being class C
- evidence p(x)
Anmerkungen:
- marginal probability
probabilty of event x
- Risk function
- Reject class
- Discriminant Functions g(x)
- Associative Rule
- Support(X,Y) ≡ P(X,Y)
- Confidence(X → Y) ≡ P(Y|X)
- Lift(X → Y) = P(X,Y) / (P(X) * P(Y))
Anmerkungen:
- = P(Y|X) / P(Y)
kind of descripting relationship btw X and Y
- Regression
- Modeling
- Triple tradeoff
- Complexity
Anmerkungen:
- [Underfitting]
Too low complexity, it may give high probability of false positive.
- amount of data points
- Generalisation error
Anmerkungen:
- [Overfitting]
Hypothesis class is too complicated and fit the training data points.
However, the new data points may match the hypothesis and the classification error may raise.
- Math notation
- g(x|θ)
Anmerkungen:
- where g(·) is the model, x is the input, and θ are the parameters
- Loss function, L(·)
- E(θ|X) =
- θ∗ =argminE(θ|X)