Logistic Regression Model (Applied Logistics Regression (2013) Hosmer David )

Beschreibung

Logistic Regresion Models
karlagape17
Mindmap von karlagape17, aktualisiert more than 1 year ago
karlagape17
Erstellt von karlagape17 vor fast 10 Jahre
26
0
1 2 3 4 5 (0)

Zusammenfassung der Ressource

Logistic Regression Model (Applied Logistics Regression (2013) Hosmer David )
  1. The Multiple Logistic Regression Model
    1. INTRODUCTION
      1. ability to handle many variables
      2. MODEL
        1. TESTING THE MODEL
          1. univariable Wald test statistics
        2. Simple
          1. INTRODUCTION
            1. outcome variable is discrete, binary or dichotomous.
              1. Example 1 Excel-Star
                1. Follow Logistic distribution
                  1. logistic regression model
                    1. Summary:
                      1. 1. The model for the conditional mean of the regression equation must be bounded between zero and one. 2. The binomial, not the normal, distribution describes the distribution of the errors and is the statistical distribution on which the analysisis based
                    2. FITTING THE LOGISTIC REGRESSION MODEL
                      1. maximum likelihood.
                        1. the method yields values for the unknown parameters that maximize the probability of obtaining the observed set of data. In order to apply this method we must first construct a function, called the likelihood function
                          1. The maximum likelihood estimators of the parameters are the values that maximize this function
                      2. TESTING FOR THE SIGNIFICANCE OF THE COEFFICIENTS
                        1. The statistic D is called the deviance, and for logistic regression, Is the same as the sum-of-squares in linear regression
                        2. CONFIDENCE INTERVAL ESTIMATION
                        3. Multinomial and Ordinal Outcomes
                          1. nominal with more than two levels
                            1. discrete choice model
                              1. The variable has three levels A,B or C is chosen.Possible covariates might include gender,age,income,family size,and others.
                                1. multinomial ,polychotomous, or polytomous logistic regression
                              2. Model
                                1. p covariates and a constant term, denoted by the vector x,of length p+1,where x0=1.
                              3. Interpretation of the Fitted Logistic Regression Model
                                Zusammenfassung anzeigen Zusammenfassung ausblenden

                                0 Kommentare

                                There are no comments, be the first and leave one below:

                                ähnlicher Inhalt

                                10 Mind Mapping Strategien für Lehrer
                                AntonS
                                Zweiter Weltkrieg und Nazi-Deutschland
                                Markus Grass
                                Zivilrecht - Handelsrecht Streitigkeiten
                                myJurazone
                                Einführung in die BWL: Kapitel 1
                                Anjay
                                Krankenkasse Grundversicherung
                                Christine Zehnder
                                Gesundheitspsychologie EC Uni Wien
                                hans urst
                                GESKO JOUR Karteikarten
                                Sascha Walter
                                Vetie: Virofragen 2016
                                Johanna Tr
                                Vetie - Immuno Wdh SS 2013
                                V R
                                Mewa WS 18/19
                                Adrienne Tschaudi