Chapter 4: Discovering and Proving Triangle Properties

Beschreibung

Mindmap am Chapter 4: Discovering and Proving Triangle Properties, erstellt von Ashley Phillips am 04/11/2015.
Ashley  Phillips
Mindmap von Ashley Phillips , aktualisiert more than 1 year ago
Ashley  Phillips
Erstellt von Ashley Phillips vor mehr als 9 Jahre
15
2
1 2 3 4 5 (1)

Zusammenfassung der Ressource

Chapter 4: Discovering and Proving Triangle Properties
  1. 4.1 Triangle Sum Conjecture
    1. The sum of the measures of the angles in every triangle is 180 degrees.
    2. 4.2 Properties of Isosceles triangles
      1. Vertex angle: The angle between the two congruent sides The base angles are the other two angles. The side between the two base angle is called the base. The other two sides are caused legs.
      2. 4.3 Triangle Inequality conjecture
        1. The sum of the lengths of any two sides of a triangle is more than the length of the third side.
          1. 4.4 and 4.5 Are there congruent shortcuts?
            1. SSS
              1. SAS
                1. ASA
                  1. SAA
                    1. SSA
                      1. AAA
                        1. Three pairs of congruent angles
                          1. Works
                        2. Two pair of congruent sides and one pair of congruent angles.
                          1. Doesn't work
                        3. Two pair of congruent angles and one pair of congruent sides(nots not between the pair of angles)
                          1. Works
                        4. Two pair pair of congruent angle and one pair of congruent sides(sides between the pair of angles)
                          1. Works
                        5. Two pairs of congruent sides and one pair of congruent angles.(angles between the pair of sides.
                          1. Works
                        6. Three pairs of congruent sides
                          1. Works
                        7. 4.6 Corresponding Parts of Congruent triangles
                          1. If you use a congruence shortcut, then you can use CPCTC to show that any of their corresponding parts are congruent
                            1. 4.7 Flowchart thinking
                              1. Flowchart proofs are when you fill in boxes for a proof instead of a two column proof.
                                1. 4.8 Proving Special Triangle Conjectures
                                  1. Vertex angleBisector Conjecture
                                    1. In an isosceles triangle the bisector of the vertex angle is also equiangular and equilateral.
                              Zusammenfassung anzeigen Zusammenfassung ausblenden

                              0 Kommentare

                              There are no comments, be the first and leave one below:

                              ähnlicher Inhalt

                              Gedichtanalyse
                              AntonS
                              Zweiter Weltkrieg und Nazi-Deutschland
                              Markus Grass
                              Kraftwerke und Stromsicherheit
                              Peter Kasebacher
                              INNO Klausur 1
                              Inno 2015
                              Vetie - Histo & Embryo P 2014
                              Fioras Hu
                              Mewa WS 18/19
                              Adrienne Tschaudi
                              Para 2016
                              Anne Käfer
                              Vetie Chirurgie 2018
                              Johanna Müller
                              Vetie Repro 2017
                              Mascha K.