A& P Test #3 - 6.28

Descripción

Completed Chapters 20, 19, and 10 so far.
Rachel Nall
Test por Rachel Nall, actualizado hace más de 1 año
Rachel Nall
Creado por Rachel Nall hace casi 8 años
51
3

Resumen del Recurso

Pregunta 1

Pregunta
[blank_start]Cardiac output[blank_end] is the quantity of blood pumped each minute into the aorta by the heart.
Respuesta
  • Cardiac output
  • Venous return
  • Cardiac index
  • Peripheral resistance

Pregunta 2

Pregunta
[blank_start]Venous return[blank_end] is the quantity of blood flowing from the veins into the right atrium (RA) each minute.
Respuesta
  • Venous return
  • Cardiac output
  • Cardiac index
  • Stroke volume

Pregunta 3

Pregunta
VR and CO must [blank_start]equal[blank_end] each other except for a few heartbeats at a time when blood is temporarily stored in or removed from the heart and lungs.
Respuesta
  • be less than
  • be greater than
  • equal
  • add to

Pregunta 4

Pregunta
Which of the following factors does NOT affect cardiac output?
Respuesta
  • Basal metabolic rate
  • Gender
  • Age
  • Body habitus
  • Increased energy requirements (exercise)

Pregunta 5

Pregunta
Cardiac Index = [blank_start]CO[blank_end] / [blank_start]m2[blank_end] m2 = [blank_start]Body Surface Area[blank_end]
Respuesta
  • CO
  • Stroke volume
  • m2
  • Venous return
  • Body Surface Area

Pregunta 6

Pregunta
The average CO for a resting adult is [blank_start]5[blank_end] liters/minute The average CI for a resting adult is [blank_start]3[blank_end] liters/minute/m2
Respuesta
  • 5
  • 3

Pregunta 7

Pregunta
At what age is a person's cardiac function the highest?
Respuesta
  • 10
  • 20
  • 30
  • 40

Pregunta 8

Pregunta
Peripheral circulatory factors that affect the flow of blood from the veins into the heart provide the primary control of CO.
Respuesta
  • True
  • False

Pregunta 9

Pregunta
Blood flow does not increase in proportion to each tissue's metabolism.
Respuesta
  • True
  • False

Pregunta 10

Pregunta
If arterial BP is constant, long-term CO will typically have an [blank_start]inverse[blank_end] relationship to total peripheral resistance. This is a form of [blank_start]Ohm's[blank_end] law.
Respuesta
  • inverse
  • proportional
  • Ohm's
  • Reynold's
  • Frank-Starling

Pregunta 11

Pregunta
The Frank-Starling law states that the [blank_start]stroke volume[blank_end] of the heart increases in response to an an increase in the volume of blood filling the heart (end diastolic volume), when all other factors remain constant. Another way to state this: a large volume of blood flows into the ventricle, the blood will stretch the walls of the heart, causing a greater expansion during diastole, which in turn increases the force of the contraction and thus the quantity of blood that is pumped into the aorta during diastole. The increased volume of blood stretches the ventricular wall, causing cardiac muscle to contract more forcefully.
Respuesta
  • cardiac output
  • cardiac index
  • stroke volume

Pregunta 12

Pregunta
According to the Frank-Starling curve, the normal heart can pump an amount of venous return up to what times the normal venous return before the heart becomes a limiting factor in the control of cardiac output?
Respuesta
  • 2
  • 2.5
  • 3
  • 3.5

Pregunta 13

Pregunta
Sympathetic stimulation and parasympathetic inhibition can significantly increase heart rate and contractility. The result of this combination is known as what kind of heart?
Respuesta
  • Effective
  • Hypoeffective
  • Hypereffective
  • Optimized

Pregunta 14

Pregunta
A number of factors can lead to a hypoeffective heart. Examples include increased arterial pressure (afterload), due to hypertension, valvular heart disease, and congenital heart disease. Select other causes of the hypoeffective heart.
Respuesta
  • Sympathetic nervous system inhibition
  • Sympathetic nervous system excitation
  • Pathological dysrhythmias
  • Acute coronary syndrome

Pregunta 15

Pregunta
The nervous system is instrumental in maintaining arterial blood pressure when peripheral blood vessels are [blank_start]dilated[blank_end] and venous return and CO [blank_start]increase[blank_end].
Respuesta
  • dilated
  • constricted
  • increase
  • decrease
  • stay the same

Pregunta 16

Pregunta
Fill in the blanks for the following: Intense exercise [blank_start]increases[blank_end] SNS outflow, causing large vein [blank_start]constriction[blank_end], and [blank_start]increase[blank_end] in heart rate and an [blank_start]increase[blank_end] in contractility.
Respuesta
  • increases
  • decreases
  • constriction
  • dilation
  • increase
  • decrease
  • increase
  • decrease

Pregunta 17

Pregunta
Beriberi disease leads to a manifestation of insufficient dietary vitamin B1 (thiamine). The results of auto-regulatory compensation [blank_start]increases[blank_end] cardiac output.
Respuesta
  • increases
  • decreases
  • maintains

Pregunta 18

Pregunta
Select the other pathologic states that increase cardiac output:
Respuesta
  • Arteriovenous (AV) fistula
  • Hypothyroidism
  • Hyperthyroidism
  • Anemia

Pregunta 19

Pregunta
Conditions that produce low CO generally fall into one of two categories: 1. Abnormalities that [blank_start]reduce[blank_end] the pumping effectiveness of the heart. 2. Abnormalities that cause venous return to [blank_start]fall too low[blank_end].
Respuesta
  • reduce
  • increase
  • fall too low
  • become too high

Pregunta 20

Pregunta
[blank_start]Hemorrhage[blank_end] is the most common non-cardiac peripheral factor that decreases venous return.
Respuesta
  • Hemorrhage

Pregunta 21

Pregunta
Non-cardiac factors that decrease cardiac output due to decreased venous return include:
Respuesta
  • Obstruction of the large veins
  • Decreased tissue mass
  • Arteriovenous Fistula
  • Hypothyroidism

Pregunta 22

Pregunta
The two primary factors that must be evaluated in the quantitative analysis of CO regulation are:
Respuesta
  • The pumping ability of the heart (cardiac output)
  • The heart's end-diastolic volume (preload)
  • Venous return curves
  • The pressure on the wall of the left ventricle during ejection (afterload)

Pregunta 23

Pregunta
The normal external pressure on the heart is equal to the normal [blank_start]intrapleural[blank_end] pressure (which is -4 mmHg).
Respuesta
  • intrapleural

Pregunta 24

Pregunta
A shift to the [blank_start]right[blank_end] reflects the increase RA pressure that will be required to fill the cardiac chambers to offset the [blank_start]increase[blank_end] in external pressure.
Respuesta
  • right
  • left
  • increase
  • decrease

Pregunta 25

Pregunta
Select the following factors that can shift the CO curve:
Respuesta
  • Cyclical changes in intrapleural pressure during respiration
  • Breathing against a negative pressure
  • Positive pressure breathing
  • Opening the thoracic cage
  • Cardiac tamponade

Pregunta 26

Pregunta
Principle factors that affect VR to the heart from the systemic circulation: ◦ 1. [blank_start]RA pressure[blank_end]  Exerts a backward force on the veins to impede flow of blood from the veins into the RA ◦ 2. The degree of filling of the [blank_start]systemiccirculation[blank_end]  Measured by the mean systemic filling pressure (Psf) which forces the systemic blood toward the heart.
Respuesta
  • RA pressure
  • systemic circulation

Pregunta 27

Pregunta
[blank_start]Psf[blank_end] is the abbreviation for mean systemic filling pressure.
Respuesta
  • Psf

Pregunta 28

Pregunta
The principle factor that affects Venous Return to the heart from the systemic circulation is resistance to blood flow between the peripheral vessels and the RA.
Respuesta
  • True
  • False

Pregunta 29

Pregunta
The normal venous return curve demonstrates that if the pumping ability of the heart decreases, the RA pressure will [blank_start]rise[blank_end], and the backward force of this rising pressure on the systemic vasculature will [blank_start]decrease[blank_end] VR.
Respuesta
  • rise
  • fall
  • stay the same
  • decrease
  • increase

Pregunta 30

Pregunta
Without compensatory ANS reflexes, VR decreases to zero when the RA pressure rises to what number in mmHg?
Respuesta
  • 4
  • 5
  • 6
  • 7

Pregunta 31

Pregunta
When both arterial and venous pressure flow in the systemic circulation [blank_start]ceases[blank_end].
Respuesta
  • ceases
  • increases
  • decreases

Pregunta 32

Pregunta
Most of the resistance to venous return occurs where?
Respuesta
  • Arterioles
  • Veins
  • Smaller arteries

Pregunta 33

Pregunta
Select what can compensate in resistance to venous return:
Respuesta
  • `small artery
  • aorta
  • arterioles
  • venuoles

Pregunta 34

Pregunta
What is another word for preload?
Respuesta
  • End-diastolic pressure
  • Venous return
  • Afterload

Pregunta 35

Pregunta
Regardless of the chamber, the [blank_start]preload[blank_end] is related to the chamber volume just prior to contraction.
Respuesta
  • preload

Pregunta 36

Pregunta
Factors that increase preload include all except the following:
Respuesta
  • Increased venous return
  • Decreased venous compliance
  • Decreased thoracic blood volume
  • Increased thoracic blood volume

Pregunta 37

Pregunta
What is the pressure within the thoracic space between the organs (lungs, heart, vena cava) and the chest wall?
Respuesta
  • intrapleural pressure (Ppl)
  • Preload
  • Pulmonary filling pressure
  • intrarterial pressure

Pregunta 38

Pregunta
[blank_start]Skeletal muscle[blank_end] has to do with venous return because the one-way valves in the veins of the legs and arms are instrumental in directing blood flow away from the limbs and towards the heart. Veins within large skeletal muscle groups also undergo compression as muscles contract and decompress as the muscles relax.
Respuesta
  • Skeletal muscle
  • Cardiac muscle
  • Smooth muscle

Pregunta 39

Pregunta
The Oxygen Fick Method, indicator dilution method, echocardiography, and ventriculogram are all methods of measuring [blank_start]cardiac output[blank_end].
Respuesta
  • cardiac output

Pregunta 40

Pregunta
The Oxygen Fick Principle states that: [blank_start]Cardiac Output[blank_end] (L/min) = 02 absorbed per minute by the lungs (mL/min) / arteriovenous 02 difference (mL/L of blood)
Respuesta
  • Cardiac Output

Pregunta 41

Pregunta
Place in order the electrical pathways of the heart. [blank_start]3[blank_end] AV node [blank_start]1[blank_end] SA node [blank_start]2[blank_end] Internodal pathway [blank_start]4[blank_end] Left and right bundles of Purkinje fibers
Respuesta
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4

Pregunta 42

Pregunta
Identify the pace of each area of the heart. SA Node: [blank_start]70 - 80 BPM[blank_end] AV Node: [blank_start]40 - 60 BPM[blank_end] Purkinje Fibers: [blank_start]15 - 40 BPM[blank_end]
Respuesta
  • 70 - 80 BPM
  • 40 - 60 BPM
  • 15 - 40 BPM

Pregunta 43

Pregunta
Heart muscle _________________.
Respuesta
  • is single-nucleated
  • lacks gap junctions
  • is syncytial
  • lacks striations

Pregunta 44

Pregunta
[blank_start]Sinus Node[blank_end] (where normal rhythmical impulse is generated) -> [blank_start]Internodal Pathways[blank_end] (conduct impulse from SA node to AV node) -> [blank_start]AV Node[blank_end] (delays impulse from atria to ventricles) -> [blank_start]AV Bundle[blank_end] (conducts impulse from atria to ventricles) -> Right & Left Bundle branches of Purkinje fibers (conduct impulse to ALL parts of the [blank_start]ventricles[blank_end])
Respuesta
  • Internodal Pathways
  • Sinus Node
  • AV Node
  • AV Bundle
  • ventricles

Pregunta 45

Pregunta
There are almost no contractile fibers in the SA node.
Respuesta
  • True
  • False

Pregunta 46

Pregunta
The SA node is located in the [blank_start]superior posterolateral wall[blank_end] of the right atrium, slightly below and lateral to the opening of the [blank_start]SVC[blank_end].
Respuesta
  • superior posterolateral wall
  • SVC

Pregunta 47

Pregunta
Which of the following is NOT a type of cardiac muscle ion channel?
Respuesta
  • Fast sodium channels
  • L-type calcium channels
  • Ligand-gated calcium channels
  • Potassium channels

Pregunta 48

Pregunta
The SA node has [blank_start]spontaneous[blank_end] depolarization.
Respuesta
  • spontaneous

Pregunta 49

Pregunta
Select the membrane potential for the SA node.
Respuesta
  • -40 to -50
  • -30 to -40
  • -60 to -70
  • -55 to -60

Pregunta 50

Pregunta
At what membrane threshold potential do slow Na-Ca channels to open up?
Respuesta
  • -30 mV
  • -40 mV
  • -50 mV
  • -60 mV

Pregunta 51

Pregunta
Place what is happening in the SA node with its appropriate location.
Respuesta
  • Slow depolarization due to Na & Ca leak.
  • Na-Ca channels open.
  • K channels open during repolarization

Pregunta 52

Pregunta
Match the channels with the appropriate description: [blank_start]I na (Fast Na Channels)[blank_end] Rapid depolarizing phase of AP • Atrial and ventricular muscle & in Purkinje fibers • (inactive at -55) [blank_start]Slow Na Current:[blank_end] inherent leakiness of the SA node is responsible for self-excitation [blank_start]K+ Current Ik[blank_end] Responsible for repolarizing phase of AP in ALL cardiomyocytes [blank_start]Ca2+ current(ICa)[blank_end] •Depolarizing phase of AP • SA node and AV node • Also triggers contractions in all cardiomyocytes
Respuesta
  • I na (Fast Na Channels)
  • Slow Na Current:
  • K+ Current Ik
  • Ca2+ current(ICa)

Pregunta 53

Pregunta
•[blank_start]Self-excitation[blank_end] to cause AP (leaky Na+ & Ca channels) -> Recovery from AP (K+ channels open) -> [blank_start]Hyperpolarization[blank_end] after AP is over (K+ channels remain open) -> Drift of the "Resting" Potential to [blank_start]Threshold[blank_end] (leaky Na+ & Ca channels) -> [blank_start]Re-excitation[blank_end] to elicit another cycle
Respuesta
  • Self-excitation
  • Hyperpolarization
  • Threshold
  • Re-excitation

Pregunta 54

Pregunta
The [blank_start]inherent leakiness[blank_end] of the sinus nodal fibers to sodium and calcium ions causes their self-excitation.
Respuesta
  • inherent leakiness

Pregunta 55

Pregunta
The SA node has no true resting potential.
Respuesta
  • True
  • False

Pregunta 56

Pregunta
Label the contractile cell or autorhythmic cell.
Respuesta
  • Autorhythmic cell
  • Contractile cell
  • Autorhythmic cell
  • Contractile cell

Pregunta 57

Pregunta
Assign the appropriate label to what is happening in the ventricular myocyte.
Respuesta
  • Na channels open
  • Na channels close
  • Ca channels open; fast K channels close
  • Ca channels close; slow K channels open
  • Resting potential

Pregunta 58

Pregunta
[blank_start]Bachman's Bundle:[blank_end] Anterior interartrial band carries impulses to left atrium.
Respuesta
  • Bachman's Bundle:

Pregunta 59

Pregunta
The delay in the AV node is:
Respuesta
  • 0.04 seconds
  • 0.09 seconds
  • 0.10 seconds
  • .20 seconds

Pregunta 60

Pregunta
The delay in the AV bundle is:
Respuesta
  • .04
  • 0.09
  • 0.10
  • 0.14

Pregunta 61

Pregunta
The total delay in AV node/AV bundle system is [blank_start]0.13[blank_end] seconds.
Respuesta
  • 0.13

Pregunta 62

Pregunta
The [blank_start]AV node[blank_end] is located in the posterior wall of the right atrium immediately behind the tricuspid valve
Respuesta
  • AV node

Pregunta 63

Pregunta
The Bundle branches and then divide into extensive system of [blank_start]Purkinje fibers[blank_end]
Respuesta
  • Purkinje fibers

Pregunta 64

Pregunta
Transmission time between A-V bundles and fibers is:
Respuesta
  • 0.04 seconds
  • 0.10 seconds
  • 0.90 seconds
  • 0.06 seconds

Pregunta 65

Pregunta
The Purkinje fibers transmit impulses [blank_start]faster[blank_end] than other fibers.
Respuesta
  • faster
  • slower

Pregunta 66

Pregunta
The Purkinje fibers are [blank_start]larger[blank_end] than ventricular muscle fibers.
Respuesta
  • larger
  • smaller

Pregunta 67

Pregunta
The Purkinje fibers have [blank_start]high[blank_end] levels of permeability of the gap junctions between successive cells in the conducting pathways.
Respuesta
  • high
  • low

Pregunta 68

Pregunta
The [blank_start]SA Node[blank_end] is the pacemaker
Respuesta
  • SA Node

Pregunta 69

Pregunta
SA node discharges both the AV node & Purkinje fibers [blank_start]before[blank_end] either of these can undergo self-excitation.
Respuesta
  • after
  • during
  • before

Pregunta 70

Pregunta
Select the resting membrane potential of the ventricular muscle cell.
Respuesta
  • -55 to -60
  • -85 to -90
  • -100 to -110
  • 40 to 60

Pregunta 71

Pregunta
What doesn't happen when the AV node is blocked?
Respuesta
  • Impulse can’t get past atria to ventricles
  • Atria continue beating at normal SA node rate and rhythm
  • New pacemaker in Purkinje system takes over driving ventricular contraction 15 to 40 bpm
  • New pacemaker is Bachman Bundle, which takes over driving the ventricular contraction.

Pregunta 72

Pregunta
Sudden AV block: Delay in pickup of the heart beat is the “[blank_start]Stokes-Adams[blank_end]” syndrome
Respuesta
  • Stokes-Adams

Pregunta 73

Pregunta
[blank_start]Parasympathetic[blank_end] (vagal) activation decreases conduction velocity (negative [blank_start]dromotropy[blank_end]) at the AV node • Decreases slope of Phase [blank_start]4[blank_end] • leads to [blank_start]slower[blank_end] depolarization of adjacent cells, and reduced velocity of conduction
Respuesta
  • Parasympathetic
  • Sympathetic
  • dromotropy
  • inotropy
  • 0
  • 3
  • 4
  • slower
  • faster

Pregunta 74

Pregunta
Parasympathetic fibers in the heart are [blank_start]muscarinic[blank_end].
Respuesta
  • nicotinic
  • muscarinic

Pregunta 75

Pregunta
Acetylcholine released by [blank_start]vagus[blank_end] nerve • Binds to cardiac [blank_start]muscarini[blank_end]c receptors • [blank_start]Decreases[blank_end] intracellular cAMP
Respuesta
  • vagus
  • muscarinic
  • Decreases

Pregunta 76

Pregunta
[blank_start]Vagal[blank_end] stimulation releases acetylcholine. This goes to muscarinic receptors that decrease cAMP. This causes increased K permeability, which decreases transmission of impulses. Ventricular escape occurs.
Respuesta
  • Vagal
  • Adrenergic
  • Sympathetic

Pregunta 77

Pregunta
[blank_start]Digitalis[blank_end] increases the vagal activity to the heart.
Respuesta
  • Digitalis

Pregunta 78

Pregunta
Sympathetic nerves release [blank_start]norepinephrine[blank_end].
Respuesta
  • norepinephrine
  • aCH
  • cAMP

Pregunta 79

Pregunta
[blank_start]Sympathetic[blank_end] activation increases conduction velocity in the AV node • Rate of depolarization increased • i.e. slope of Phase [blank_start]0[blank_end] increase • Leads to more rapiddepolarization of adjacent cellsàmore rapid conduction of action potentials • [blank_start]Positive[blank_end] dromotropy
Respuesta
  • Sympathetic
  • Parasympathetic
  • 0
  • 3
  • 4
  • Positive
  • Negative

Pregunta 80

Pregunta
Normal delay of conduction thru AV node reducedàtime between atrial and ventricular contraction reduced • Increase in AV conduction velocity manifests as [blank_start]decrease[blank_end] in P-R interval on EKG
Respuesta
  • decrease
  • increase

Pregunta 81

Pregunta
[blank_start]Esmolol[blank_end] is a beta blocker that's metabolized in the blood.
Respuesta
  • Esmolol

Pregunta 82

Pregunta
Parasympathetic Nerves • Releases [blank_start]acetylcholine[blank_end] • Binds to [blank_start]muscarinic[blank_end] • [blank_start]Increases[blank_end] conductivity of K and [blank_start]decreases[blank_end] conductivity of Ca2+ • [blank_start]Decreases[blank_end] heart rate of rhythm and excitability of AV junctional fibers and AV node • Excitatory signals are no longer transmitted into the ventricles.
Respuesta
  • acetylcholine
  • norepinephrine
  • muscarinic
  • nicotinic
  • Decreases
  • Increases
  • decreases
  • increases
  • Decreases
  • Increases

Pregunta 83

Pregunta
SympatheticNerves • Releases [blank_start]norepinephrine[blank_end] at sympathetic endings. • Binds to [blank_start]β1[blank_end] receptors • [blank_start]Increases[blank_end] the rate of sinus nodal discharge. • [blank_start]Increases[blank_end] the overall heart activity. • [blank_start]Increases[blank_end] the permeability of Na+ and Ca2+ ions.
Respuesta
  • acetylcholine
  • norepinephrine
  • β1
  • β2
  • Decreases
  • Increases
  • Decreases
  • Increases
  • Decreases
  • Increases

Pregunta 84

Pregunta
Phase 0 is [blank_start]depolarization[blank_end].
Respuesta
  • depolarization

Pregunta 85

Pregunta
Conduction velocity is altered by: Sympathetic stimulation ([blank_start]increases[blank_end]) Vagal stimulation ([blank_start]decreases[blank_end]) Ischemia/Hypoxia: [blank_start]decreases[blank_end] Drugs (adrenergic and cholinergic): increase or decrease
Respuesta
  • decreases
  • increases
  • decreases
  • increases
  • decreases
  • increases

Pregunta 86

Pregunta
Label the effects of the parasympathetic and sympathetic nerve activations appropriately.
Respuesta
  • Sympathetic
  • Vagal/Parasympathetic

Pregunta 87

Pregunta
Key Difference in Pacemaker Cell AP •The higher the slope of Phase [blank_start]4[blank_end], the higher the rate •Vagal stimulation [blank_start]slows[blank_end] phase 4 depolarization •Rate slows •Catecholamines speed it up
Respuesta
  • 0
  • 3
  • 4
  • slows
  • speeds

Pregunta 88

Pregunta
Essentially/primary hypertension is [blank_start]95[blank_end] percent of cases. Secondary/demonstrable causes are [blank_start]5[blank_end] percent of cases.
Respuesta
  • 95
  • 5

Pregunta 89

Pregunta
[blank_start]Salt[blank_end] and H2O retention is the final common pathway shared by all of these etiologies; Interplay of these 2 determined by kidneys
Respuesta
  • Salt

Pregunta 90

Pregunta
Extracellular fluid volume increases, then arterial pressure [blank_start]increases[blank_end] • increase in arterial pressure, then the kidneys to [blank_start]lose[blank_end] Na+ and water then returns arterial BP to return to normal
Respuesta
  • decreases
  • increases
  • lose
  • retain

Pregunta 91

Pregunta
The [blank_start]renal function curve[blank_end] depicts the effect of increasing arterial BP on urinary output (UOP).
Respuesta
  • renal function curve

Pregunta 92

Pregunta
Fill in the blanks for the renal function curve. • [blank_start]50[blank_end] mm Hg = UOP = 0 • [blank_start]100[blank_end] mm Hg = normal UOP • [blank_start]200[blank_end] mm Hg = 6-8 times normal
Respuesta
  • 50
  • 100
  • 150
  • 200

Pregunta 93

Pregunta
Over time, output must = intake • The point at which this occurs is where the two lines intersect is known as the [blank_start]equilibrium point[blank_end]. • The equilibrium point tends to be at an arterial BP of [blank_start]100[blank_end] mm Hg
Respuesta
  • equilibrium point
  • 100

Pregunta 94

Pregunta
If arterial BP [blank_start]increases[blank_end] then the loss of H2O and Na+ will be greater than the intake → a [blank_start]decrease[blank_end] in fluid volume and BP will [blank_start]decrease[blank_end] until the arterial pressure falls exactly back to the equilibrium point
Respuesta
  • decreases
  • increases
  • decrease
  • increase
  • decrease
  • increase

Pregunta 95

Pregunta
If arterial BP falls below the equilibrium point, intake of Na+ and H2O will be [blank_start]greater[blank_end] than the output → an [blank_start]increase[blank_end] in fluid volume and BP until the arterial pressure returns exactly back to the equilibrium point
Respuesta
  • greater
  • less
  • decrease
  • increase

Pregunta 96

Pregunta
This equilibrium point for the kidneys will occur as long as (1) [blank_start]renal output[blank_end] of salt and water and (2) [blank_start]intake[blank_end] of salt and water remain in balance
Respuesta
  • renal output
  • intake

Pregunta 97

Pregunta
2 primary ways to change long-term arterial pressure levels • Shifting [blank_start]equilibrium point[blank_end] of the renal output curve to a different pressure • Changing level of [blank_start]H2O[blank_end] and Na+ intake
Respuesta
  • equilibrium point
  • H2O

Pregunta 98

Pregunta
[blank_start]Renal artery stenosis[blank_end] can cause the renal output curve and equilibrium point to shift to the right.
Respuesta
  • Renal artery stenosis

Pregunta 99

Pregunta
As the intake of water/salt [blank_start]increases[blank_end], the equilibrium point shifts to the right (160 mm Hg) • If there were a [blank_start]decrease[blank_end] in water/salt intake, the equilibrium point and the arterial BP would also decrease
Respuesta
  • decreases
  • increases
  • decrease
  • increase

Pregunta 100

Pregunta
Effect of Total Peripheral Resistance TPR Acutely, if TPR [blank_start]increases[blank_end], arterial BP [blank_start]increases[blank_end] • Arterial pressure = CO x TPR
Respuesta
  • decreases
  • increases
  • decreases
  • increases

Pregunta 101

Pregunta
If renal vascular resistance (RVR) is NOT affected (i.e., increased when TPR is increased), then the equilibrium point for BP [blank_start]will not[blank_end] change
Respuesta
  • will
  • will not

Pregunta 102

Pregunta
Changes in TPR do not typically affect the [blank_start]long-term[blank_end] arterial pressure level
Respuesta
  • long-term
  • short-term

Pregunta 103

Pregunta
Which of the following conditions does NOT have a long-term effect on TPR and therefore equilibrium point.
Respuesta
  • Beriberi
  • AV shunts
  • Pulmonary disease
  • Paget's disease
  • Diabetes mellitus
  • Hypothyroidism

Pregunta 104

Pregunta
An increase in TPR without any change in renal resistance would:
Respuesta
  • Transiently increase arterial pressure
  • Transiently increase sodium and water excretion
  • Decrease extracellular fluid (ECF)
  • All of the above

Pregunta 105

Pregunta
autoregulation— blood volume has [blank_start]increased[blank_end] then tissue blood flow [blank_start]increases[blank_end] throughout body; [blank_start]constricts[blank_end] blood vessels everywhere
Respuesta
  • decreased
  • increased
  • decreases
  • increases
  • constricts
  • vasodilates

Pregunta 106

Pregunta
As Na+ intake increases, two things happen: • ECF osmolality [blank_start]increases[blank_end] → stimulation of the thirst center to drink more water to return the ECF salt concentration to normal • This excess water intake → ↑ ECFV • The increased osmolality also stimulates the release of [blank_start]ADH[blank_end] → kidney reabsorption of H2O → ↑ ECFV
Respuesta
  • decreases
  • increases
  • ADH
  • Angiotensin
  • Aldosterone

Pregunta 107

Pregunta
The first stage in a volume-loading hypertension is an increase in [blank_start]cardiac output[blank_end]. The reduction in total peripheral resistance is more related to a [blank_start]baroreceptor[blank_end] effect. The initial increase in BP is the result of the rise in CO.
Respuesta
  • cardiac output
  • baroreceptor

Pregunta 108

Pregunta
2nd stage – • HTN exists • CO returns to near [blank_start]normal[blank_end] • At same time [blank_start]increased[blank_end] TPR occurs
Respuesta
  • normal
  • increased

Pregunta 109

Pregunta
Which of the following doesn't happen several weeks following initial-onset volume loading?
Respuesta
  • Hypertension
  • Significant increase in TPR
  • Nearly complete return of ECFV, BV, and CO back to normal.
  • Significant decrease in TPR.

Pregunta 110

Pregunta
Angiotensinogen-converting enzyme (ACE) lives mostly in where?
Respuesta
  • Liver
  • Lungs
  • Kidneys
  • Heart

Pregunta 111

Pregunta
Where is renin mostly made and stored?
Respuesta
  • Liver
  • Lungs
  • Kidneys
  • Heart

Pregunta 112

Pregunta
Which enzyme in the blood and tissues inactivates angiotensin II?
Respuesta
  • Angiotensin I
  • Renin
  • Angiotensinases
  • Aldosterone

Pregunta 113

Pregunta
Angiotensin Effect on Retention of Salt/Water By Kidneys 1. Direct renal effects • Renal arteriole [blank_start]constriction[blank_end] • Less blood flow thru kidneysàless fluid filtered thru glomeruli into the tubules • Slowedbloodflowresultsinlessperitubularcapillariespressureàrapidreabsorption of fluid from tubules • Act directly on tubular cells to#tubular [blank_start]reabsorption[blank_end] of sodium & water
Respuesta
  • constriction
  • reabsorption

Pregunta 114

Pregunta
causes aldosterone secretion by adrenal glands • Results in significant [blank_start]increase[blank_end] in sodium reabsorption by renal tubules then H2Oretention, which leads to [blank_start]increase[blank_end] in fluid volume and an increase in BP
Respuesta
  • increase
  • increase

Pregunta 115

Pregunta
Which of the following does not increase renal excretion of Na and water-increasing BP?
Respuesta
  • Angiotensin II
  • Aldosterone
  • Atrial natriuretic peptide
  • Sympathetic nervous system
  • Endothelin

Pregunta 116

Pregunta
Factors that decrease renal excretion of Na & Water to increase BP: 1. [blank_start]Aldosterone[blank_end] 2. [blank_start]Angiotensin II[blank_end] 3. [blank_start]Endothelin[blank_end] 4. [blank_start]Sympathetic nervous system[blank_end] Factors that Increase Renal Excretion of Na and Water, Reducing Blood Pressure 1. [blank_start]Atrial natriuretic peptide[blank_end] 2. [blank_start]Dopamine[blank_end] 3. [blank_start]Nitric oxide[blank_end]
Respuesta
  • Aldosterone
  • Angiotensin II
  • Endothelin
  • Sympathetic nervous system
  • Atrial natriuretic peptide
  • Dopamine
  • Nitric oxide

Pregunta 117

Pregunta
Atrial natriuretic peptide is secreted from the [blank_start]right atrium[blank_end].
Respuesta
  • right atrium

Pregunta 118

Pregunta
[blank_start]Angiotensin II[blank_end] • Constricts renal arteriolesàless blood flow to kidneys • Stimulates aldosterone secretionàincreases Na+ reabsorption • Directly stimulates Na+ reabsorption in proximal tubules, loops of Henle, distal tubules and collecting tubules [blank_start]• Aldosterone[blank_end] • secreted by adrenal glands • Sodium reabsorption which is followed by water reabsorption • [blank_start]Sympathetic nervous activity[blank_end] • Constricts renal arterioles, reducing GFR; low levels of SNS activation acts on alpha receptors on renal tubular cells increasing Na reabsorption; also stimulates release of renin and AGII formation • [blank_start]Endothelin[blank_end] • Amino peptide in endothelial cells released in response to vessel trauma • Intense vasoconstriction
Respuesta
  • Angiotensin II
  • • Aldosterone
  • Sympathetic nervous activity
  • Endothelin

Pregunta 119

Pregunta
[blank_start]Atrial natriuretic peptide[blank_end] ¤ Causes decreased Na and H2O reabsorptionà#UOPàreturn blood volume to normalà$BP ̈[blank_start]Nitric oxide[blank_end] ¤Vasodilator ¤ Basal level of NO in kidneys, helps maintain renal vasodilation allowing normal renal excretion of salt/water ̈[blank_start]Dopamine[blank_end] ¤ At low doses, stimulates dopamine- 1 receptors nCause renal vessel vasodilation nStimulates natriuresis
Respuesta
  • Atrial natriuretic peptide
  • Nitric oxide
  • Dopamine

Pregunta 120

Pregunta
Use the dropdown to choose the appropriate stage in the cardiac cycle: [blank_start]Diastole[blank_end]: Muscle re-establishing Na/K/Ca gradient [blank_start]Systole[blank_end]: Contraction of muscle & ejection of blood from chambers [blank_start]Systole[blank_end]: Muscle stimulated by action potential [blank_start]Diastole[blank_end]: Relaxation of muscle & filling chambers with blood
Respuesta
  • Diastole
  • Systole
  • Diastole
  • Systole
  • Diastole
  • Systole
  • Diastole
  • Systole

Pregunta 121

Pregunta
Drag and drop to the appropriate location on the cardiac cycle: [blank_start]P-wave[blank_end]: Also known as the atrial wave, represents the spread of depolarization [blank_start]QRS[blank_end]: Ventricle depolarization [blank_start]T-wave[blank_end]: Ventricular repolarization
Respuesta
  • P-wave
  • QRS
  • T-wave

Pregunta 122

Pregunta
Choose if the following descriptions match the atria or the ventricles: [blank_start]Atria[blank_end]: Contraction enhances ventricular filling. [blank_start]Ventricles[blank_end]: Blood flows from the RV and LV into the pulmonary artery and aorta [blank_start]Atria[blank_end]: Blood flows from the IVC and SVC
Respuesta
  • Atria
  • Ventricles
  • Atria
  • Ventricles
  • Atria
  • Ventricles

Pregunta 123

Pregunta
True or false: The amount of blood pumped out of the RV will always equal the amount of blood pumped out of the LV.
Respuesta
  • True
  • False

Pregunta 124

Pregunta
The fullest the ventricle will be is the end diastolic volume (EDV). This number is what?
Respuesta
  • 40 to 50 mL
  • 50 to 100 mL
  • 110 to 120 mL
  • 150 to 200 mL

Pregunta 125

Pregunta
The emptiest the ventricle will be is the end systolic volume (ESV). What number is this?
Respuesta
  • 40 to 50 mL
  • 50 to 100 mL
  • 100 to 150 mL
  • 150 to 200 mL

Pregunta 126

Pregunta
The comparison of the end diastolic volume to the end systolic volume is what?
Respuesta
  • Total peripheral resistance
  • Pulmonary filling pressure
  • Ejection fraction or stroke volume
  • Arterial pressure

Pregunta 127

Pregunta
The average ejection fraction in a healthy adult is what?
Respuesta
  • 30 percent
  • 40 percent
  • 50 percent
  • 60 percent

Pregunta 128

Pregunta
Select the two factors that can change the EDV and the ESV.
Respuesta
  • Strength of contraction
  • Increases in diastolic filling

Pregunta 129

Pregunta
Drag and drop the appropriate part of the heart to the area it works. [blank_start]Right Ventricle (RV)[blank_end]: Deoxygenated blood from RA [blank_start]Right Atrium (RA)[blank_end]: Deoxygenated blood from IVC and SVC [blank_start]Left Ventricle (LV)[blank_end]: Oxygenated blood from LA [blank_start]Left Atrium (LA)[blank_end]: Oxygenated blood from pulmonary circulation
Respuesta
  • Right Ventricle (RV)
  • Right Atrium (RA)
  • Left Ventricle (LV)
  • Left Atrium (LA)

Pregunta 130

Pregunta
The atrium is the [blank_start]weaker[blank_end] pump of the heart. The [blank_start]right[blank_end] ventricle sends blood to the pulmonary circulation. The [blank_start]left[blank_end] ventricle sends blood to the peripheral circulation.
Respuesta
  • stronger
  • weaker
  • left
  • right
  • left
  • right

Pregunta 131

Pregunta
Name the three types of cardiac muscle in alphabetical order: [blank_start]Atrial[blank_end] muscle [blank_start]Excitatory[blank_end] / conductive muscle [blank_start]Ventricular[blank_end] muscle
Respuesta
  • Atrial
  • Excitatory
  • Ventricular

Pregunta 132

Pregunta
Which of the following is a difference between cardiac muscle and skeletal muscle?
Respuesta
  • Striations
  • Actin and myosin filaments
  • Low-Resistance intercalated disks

Pregunta 133

Pregunta
Heart muscle is a [blank_start]syncytium[blank_end] of many heart muscle cells. When one cell becomes excited the action potential spreads to all of them
Respuesta
  • syncytium

Pregunta 134

Pregunta
Identify the three characteristics of cardiac muscle and how an impulse travels. [blank_start]Autorhythmic cell[blank_end] [blank_start]Gap junction[blank_end] [blank_start]Contractile cell[blank_end]
Respuesta
  • Autorhythmic cell
  • Nerve
  • Gap junction
  • Neuromuscular junction
  • Contractile cell
  • Muscle cell

Pregunta 135

Pregunta
Contraction of cardiac muscle is initiated by the [blank_start]SA node[blank_end].
Respuesta
  • SA node
  • AV node
  • Bundle of His
  • Purkinje fibers

Pregunta 136

Pregunta
Action Potentials: The resting membrane potential of cardiac muscle is [blank_start]-85 to -95[blank_end]. The action potential of cardiac muscle is [blank_start]105[blank_end] millivolts. The plateau lasts [blank_start]0.2 to 0.3[blank_end] seconds in ventricular muscle -- much longer than skeletal muscle.
Respuesta
  • -85 to -95
  • -100 to -120
  • -60 to -70
  • 105
  • 120
  • 95
  • 0.2 to 0.3
  • 0.3 to 0.4
  • 0.5 to 0.7

Pregunta 137

Pregunta
Which of the following is responsible for the influx of intracellular calcium in cardiac muscle?
Respuesta
  • Intracellular sarcoplasmic reticulum
  • Activation of the dihydropridene (DHP) channels
  • Activation of the ligand-gated channels
  • Passive sodium flow

Pregunta 138

Pregunta
In cardiac muscle, after the outflow of K+ ions during an action potential (AP), the permeability to K+ ions [blank_start]decreases[blank_end] tremendously. This prevents the early return of the AP voltage to its resting level.
Respuesta
  • decreases
  • increases

Pregunta 139

Pregunta
Action potentials of the cardiac cell is much [blank_start]longer[blank_end] than the AP of the nerve cell.
Respuesta
  • longer
  • shorter

Pregunta 140

Pregunta
Label the portions of the ventricular muscle action potential:
Respuesta
  • Fast Na channels open, then slow Ca chan
  • K channels open
  • Ca channels open more
  • K channels open more
  • Resting membrane potential

Pregunta 141

Pregunta
Put the steps of rapid depolarization of a cardiac cell in order: [blank_start]Rapid change membrane pot. from + to -[blank_end] [blank_start]Voltage pauses above 0 mV level[blank_end] [blank_start]Membrane potential inc. to Na[blank_end] and [blank_start]dec to K[blank_end] [blank_start]Begins absolute refractory period[blank_end] [blank_start]Cardiac muscle can't be excited again.[blank_end]
Respuesta
  • Rapid change membrane pot. from + to -
  • Voltage pauses above 0 mV level
  • Membrane potential inc. to Na
  • dec to K
  • Begins absolute refractory period
  • Cardiac muscle can't be excited again.

Pregunta 142

Pregunta
Put the steps of initial re-polarization in order for cardiac muscle: 1. [blank_start]Movement of Na into cells STOPS[blank_end] 2. [blank_start]Sodium gates close[blank_end] 3. [blank_start]C enters cell.[blank_end] 4. [blank_start]K leaves cell.[blank_end] 5. [blank_start]When Na stops, voltage begins to decline[blank_end]. 6. [blank_start]SLOW influx of Ca begins via slow Ca[blank_end] channels.
Respuesta
  • Movement of Na into cells STOPS
  • Sodium gates close
  • C enters cell.
  • K leaves cell.
  • When Na stops, voltage begins to decline
  • SLOW influx of Ca begins via slow Ca

Pregunta 143

Pregunta
SA node action potential has [blank_start]fewer[blank_end] phases than other cardiac muscle types.
Respuesta
  • fewer
  • more
  • the same amount

Pregunta 144

Pregunta
Place in order the phases of the SA node. Phase 0: [blank_start]Na & Ca influx[blank_end] Phase 3: [blank_start]K efflux[blank_end] Phase 4: [blank_start]Progressively slowed K efflux[blank_end] & intrinsic [blank_start]Na influx leak causes spontaneous[blank_end] depolarization.
Respuesta
  • Na & Ca influx
  • K efflux
  • Progressively slowed K efflux
  • Na influx leak causes spontaneous

Pregunta 145

Pregunta
[blank_start]Refractory period:[blank_end] During this time, the cardiac muscle cannot be re-excited. [blank_start]Relative refractory period:[blank_end] Cell can be excited, but the signal must be very strong. Example is an early or "premature" contraction.
Respuesta
  • Refractory period:
  • Relative refractory period:

Pregunta 146

Pregunta
Cardiac T-tubules are five times [blank_start]larger[blank_end] than skeletal muscle T-tubules.
Respuesta
  • larger
  • smaller

Pregunta 147

Pregunta
Excess Ca causes [blank_start]spastic contraction[blank_end]. Low Ca causes [blank_start]cardiac dilation[blank_end].
Respuesta
  • spastic contraction
  • cardiac dilation

Pregunta 148

Pregunta
Atrioventricular (AV) valves allow blood flow in one direction FROM atria to ventricle. [blank_start]Tricuspid valve[blank_end]: Between RA & RV [blank_start]Mitral valve:[blank_end] Between LA & LV
Respuesta
  • Tricuspid valve
  • Mitral valve:

Pregunta 149

Pregunta
The semilunar valves are the outlet valves of the ventricles. They provide blood from each ventricle into large outflow tract vessel. [blank_start]Pulmonary valve[blank_end]: Between RV & Pulmonary artery [blank_start]Aortic valve[blank_end]: Between LV & aorta
Respuesta
  • Pulmonary valve
  • Aortic valve

Pregunta 150

Pregunta
Label the parts of the Atrial Pressure Wave:
Respuesta
  • Atrial Contraction
  • Ventricular contraction (AV valves bulge
  • flow of blood into the atria

Pregunta 151

Pregunta
Diastole -Isovolumic relaxation -A-V valves [blank_start]open[blank_end] -Rapid inflow of blood -Diastasis -Slow flow into ventricle -Atrial systole -Extra blood in following P wave. -Accounts for 20-25 % of filling
Respuesta
  • close
  • open

Pregunta 152

Pregunta
Systole 1. Isovolumic contraction 2. A-V valves [blank_start]close[blank_end] ventricular press>atrial press 3. Aortic valve opens 4. Ejection phase 5. Aortic valve closes
Respuesta
  • close
  • open

Pregunta 153

Pregunta
Aortic Pressure Curve 1. Aortic pressure starts to [blank_start]increase[blank_end] during systole after the aortic valve opens 2. Aortic pressure [blank_start]decreases[blank_end] toward the end of the ejection phase. 3. Aftertheaorticvalvecloses,an incisura occurs because of sudden cessation of back-flow toward left ventricle. 4. Aortic pressure [blank_start]decreases[blank_end] slowly during diastole because of the elasticity of the aorta.
Respuesta
  • decrease
  • increase
  • decreases
  • increases
  • decreases
  • increases

Pregunta 154

Pregunta
[blank_start]Ejection Fraction[blank_end] = (SV/EDV) x 100
Respuesta
  • Ejection Fraction

Pregunta 155

Pregunta
Compute the following to calculate ejection fraction: EDV = 150 End-Systolic Volume = 50
Respuesta
  • 55%
  • 60%
  • 67%
  • 70%

Pregunta 156

Pregunta
If heart rate is 70 and stroke volume is 70, what is the cardiac output?
Respuesta
  • 3.5 L/min
  • 4 L/min
  • 4.9 L/min
  • 6 L/min

Pregunta 157

Pregunta
The normal value for ejection fraction is [blank_start]60 to 70[blank_end] percent. An EF less than [blank_start]40[blank_end] percent is associated with significant left ventricular impairment.
Respuesta
  • 60 to 70
  • 50 to 60
  • 40 to 60
  • 40
  • 50
  • 30

Pregunta 158

Pregunta
Select the normal valve area for the Aortic valve.
Respuesta
  • 1.5 to 3.0
  • 2.5 to 4.5
  • 3 to 5
  • 4 to 6

Pregunta 159

Pregunta
What is the normal valve area for the mitral valve?
Respuesta
  • 2.5 to 4.5
  • 3 to 5
  • 1 to 3
  • 4 to 6

Pregunta 160

Pregunta
Mean Pressure Gradient (mmHg) 1. Aortic <[blank_start]5[blank_end] 2. Mitral <[blank_start]2[blank_end]
Respuesta
  • 5
  • 3
  • 2
  • 5
  • 3
  • 2

Pregunta 161

Pregunta
Because of smaller opening, velocity through aortic & pulmonary valves [blank_start]exceed[blank_end] that through the A-V valves.
Respuesta
  • exceed
  • are less than

Pregunta 162

Pregunta
Label the ventricular pressure/volume loops.
Respuesta
  • Mitral Valve (MV) Closes
  • Aortic Valve (AV) Opens
  • Aortic Valve Closes
  • Mitral Valve Opens
  • Stroke Volume (70mL)
  • End Systolic Volume (50mL)
  • End diastolic volume (120 mL)
  • Afterload
  • Preload

Pregunta 163

Pregunta
Know these key points from Ray's powerpoint.
Respuesta
  • Systole begins, diastole ends
  • Systole ends, Diastole begins

Pregunta 164

Pregunta
Increased contractility [blank_start]increases[blank_end] stroke volume.
Respuesta
  • decreases
  • increases

Pregunta 165

Pregunta
Increased preload [blank_start]increases[blank_end] stroke volume.
Respuesta
  • decreases
  • increases

Pregunta 166

Pregunta
Increased afterload [blank_start]decreases[blank_end] stroke volume.
Respuesta
  • decreases
  • increases

Pregunta 167

Pregunta
Increasing the arterial pressure in the aorta does not decrease the CO until the MAP rises above what?
Respuesta
  • 80
  • 100
  • 120
  • 160

Pregunta 168

Pregunta
Frank-Starling Law Intrinsic ability of the heart to adapt to increasing volumes of inflowing blood Greater the heart muscle is stretched during filling, the [blank_start]greater[blank_end] force of contraction, the greater amt of blood pumped to aorta
Respuesta
  • greater
  • lesser

Pregunta 169

Pregunta
The Frank-Starling Relationship says that [blank_start]Increased[blank_end] ventricular filling [blank_start]Increased[blank_end] Preload [blank_start]Increased[blank_end] LVEDP [blank_start]Increased[blank_end] Stroke Volume
Respuesta
  • Decreased
  • Increased
  • Decreased
  • Increased
  • Decreased
  • Increased
  • Decreased
  • Increased

Pregunta 170

Pregunta
What are the ways to increase cardiac output? [blank_start]Increase[blank_end] contractility [blank_start]Increase[blank_end] preload [blank_start]Decrease[blank_end] after load Change the rate
Respuesta
  • Decrease
  • Increase
  • Decrease
  • Increase
  • Decrease
  • Increase
Mostrar resumen completo Ocultar resumen completo

Similar

Universidades de Latinoamérica
Diego Santos
mapa conceptal
Maribel Maradiaga
MATEMÁTICAS PRIMARIA
Ulises Yo
CARBOHIDRATOS
Andrea Lopez Riv
Química Orgánica
pedro.casullo
Cómo Usar Fichas para Mejorar el Aprendizaje de tus Alumnos
Diego Santos
TURISMO SOSTENIBLE
DAVID MARTINEZ
Cualidades del sonido
Olga Veiga
GEOGRAFIA
ROSA MARIA ARRIAGA
Formación Cívica y Ética
Karina Tobias
106 Mejores Practicas en Supply Chain Management y Logistica
julian Valencia