Momentum (Linear and Angular)

Descripción

Mapa Mental sobre Momentum (Linear and Angular), creado por Michael Bueno7256 el 20/11/2014.
Michael Bueno7256
Mapa Mental por Michael Bueno7256, actualizado hace más de 1 año
Michael Bueno7256
Creado por Michael Bueno7256 hace más de 9 años
36
0

Resumen del Recurso

Momentum (Linear and Angular)
  1. Conservation of momentum
    1. Conservation of energy

      Nota:

      • Think of energy as a bank account. Energy can be withdrawn, at which point it changes form but it does NOT disapear 
      1. Total momentum of an isolated system is conserved/constant which means that Pf=Pi and Δp = 0, in all directions/dimensions

        Nota:

        • (if the sum of external forces = 0 is negligible AND no mass enters or leaves)
        1. If ΣWork > 0 then there is ΔP(>0)
          1. 2 Body Collisions (Linear Momentum)
            1. Elastic
              1. A perfectly elastic collision is defined as one in which there is no loss of kinetic energy in the collision
                1. One Dimensional
                  1. Two Dimensional
                    1. Adjunto:

                        1. To find theta between two elastic collisions, use
                      1. To find velocities, we use relative velocity trick, (v2 − v1)f = −(v2 − v1)i
                    2. Inelastic
                      1. An inelastic collision is one in which part of the kinetic energy is changed to some other form of energy in the collision.
                2. Linear
                  1. Vector
                    1. M= Kg
                      1. V= M/s
                        1. Kgm/s
                      2. Angular Momentum= L
                        1. Vector quantity
                          1. Moment of Inertia - Kg x meters^2
                            1. The rotational analog to mass- it represents an objects rotational inertia. An object's rotational inertia is determined by the chosen axis of rotation and is additive.
                              1. Parallel axis theorem: The moment of inertia of a parallel axis is equal to the moment of inertia of an object's center of mass + the total mass x the distance between the center of mass and the parallel axis of rotation
                            2. Angular Velocity- ω
                              1. Rad/s -> = V/r
                          Mostrar resumen completo Ocultar resumen completo

                          Similar

                          Rudimentary Physics Flashcards
                          Adelinda Davis
                          Chapter 7 - Laws of motion and momentum
                          Kieran Lancaster
                          Quantum Mechanics
                          Becca Cassidy
                          Animales
                          Diego Santos
                          La Segunda República
                          bsodepeliculas
                          Comentario De Texto 1ºBachillerato
                          Karo Poghosyan
                          TOPIK (coreano) PRINCIPIANTE 1 - VOCABULARIO 1/9
                          michingusergi
                          Historia de la Filosofía
                          Guillermo Carril
                          Mesoamerica- Linea del tiempo
                          jonyjr1
                          Aparato CIRCULATORIO - De Mapa Mental
                          JL Cadenas
                          FASES PROCEDIMIENTO ADMTVO
                          Lauriña Gomez Martin