Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Momentum (Linear and Angular)

Descripción

Mapa Mental sobre Momentum (Linear and Angular), creado por Michael Bueno7256 el 20/11/2014.
Michael Bueno7256
Mapa Mental por Michael Bueno7256, actualizado hace más de 1 año
Michael Bueno7256
Creado por Michael Bueno7256 hace más de 10 años
43
0
1 2 3 4 5 (0)

Resumen del Recurso

Momentum (Linear and Angular)
  1. Conservation of momentum
    1. Conservation of energy

      Nota:

      • Think of energy as a bank account. Energy can be withdrawn, at which point it changes form but it does NOT disapear 
      1. Total momentum of an isolated system is conserved/constant which means that Pf=Pi and Δp = 0, in all directions/dimensions

        Nota:

        • (if the sum of external forces = 0 is negligible AND no mass enters or leaves)
        1. If ΣWork > 0 then there is ΔP(>0)
          1. 2 Body Collisions (Linear Momentum)
            1. Elastic
              1. A perfectly elastic collision is defined as one in which there is no loss of kinetic energy in the collision
                1. One Dimensional
                  1. Two Dimensional
                    1. Adjunto:

                        1. To find theta between two elastic collisions, use
                      1. To find velocities, we use relative velocity trick, (v2 − v1)f = −(v2 − v1)i
                    2. Inelastic
                      1. An inelastic collision is one in which part of the kinetic energy is changed to some other form of energy in the collision.
                2. Linear
                  1. Vector
                    1. M= Kg
                      1. V= M/s
                        1. Kgm/s
                      2. Angular Momentum= L
                        1. Vector quantity
                          1. Moment of Inertia - Kg x meters^2
                            1. The rotational analog to mass- it represents an objects rotational inertia. An object's rotational inertia is determined by the chosen axis of rotation and is additive.
                              1. Parallel axis theorem: The moment of inertia of a parallel axis is equal to the moment of inertia of an object's center of mass + the total mass x the distance between the center of mass and the parallel axis of rotation
                            2. Angular Velocity- ω
                              1. Rad/s -> = V/r
                          Mostrar resumen completo Ocultar resumen completo

                          0 comentarios

                          There are no comments, be the first and leave one below:

                          Similar

                          Chapter 7 - Laws of motion and momentum
                          Kieran Lancaster
                          Quantum Mechanics
                          Becca Cassidy
                          Segunda Guerra Mundial 1939-1945
                          maya velasquez
                          Ácidos, bases y sales - Formulación y nomenclatura
                          pedro.casullo
                          Mapa Conceptual, Seguridad Social en Colombia
                          mafe__09
                          Prehistoria de la humanidad.
                          Katherine Forero
                          50 Things To Do Between Your Study Sessions
                          Elaine del Valle
                          Balanza de pagos
                          Marceline Gutierrez
                          ECUACIÓN CONTABLE
                          Sonia Lyvy BARCO CORREA
                          Texto Narrativo
                          Diana Banda