Machine Learning

Descripción

Mapa Mental sobre Machine Learning, creado por Chi Wing Yau el 10/02/2015.
Chi Wing Yau
Mapa Mental por Chi Wing Yau, actualizado hace más de 1 año
Chi Wing Yau
Creado por Chi Wing Yau hace casi 11 años
39
1

Resumen del Recurso

Machine Learning
  1. Supervised Learning
    1. Vapnik-Chervonenkis (VC) Dimension
      1. Classification
        1. Bayesian Decision Theory

          Nota:

          • P(C|x) = P(C) * p(x|C) / p(x)    
          1. posterior p(C | x)

            Nota:

            • = prior * likelihood / evidence
            1. prior P(C = i)

              Nota:

              • probability of being class i 
              1. likelihood p(x|C)

                Nota:

                • conditional probability, probability of event x given being class C 
                1. evidence p(x)

                  Nota:

                  •  marginal probability probabilty of event x
                2. Risk function
                  1. Reject class
                    1. Discriminant Functions g(x)
                      1. Associative Rule
                        1. Support(X,Y) ≡ P(X,Y)
                          1. Confidence(X → Y) ≡ P(Y|X)
                            1. Lift(X → Y) = P(X,Y) / (P(X) * P(Y))

                              Nota:

                              • = P(Y|X) / P(Y) kind of descripting relationship btw X and Y               
                        2. Regression
                          1. Modeling
                            1. Triple tradeoff
                              1. Complexity

                                Nota:

                                • [Underfitting] Too low complexity, it may give high probability of false positive.
                                1. amount of data points
                                  1. Generalisation error

                                    Nota:

                                    • [Overfitting] Hypothesis class is too complicated and fit the training data points. However, the new data points may match the hypothesis and the classification error may raise.
                                  2. Math notation
                                    1. g(x|θ)

                                      Nota:

                                      •  where g(·) is the model, x is the input, and θ are the parameters 
                                      1. Loss function, L(·)
                                        1. E(θ|X) =
                                          1. θ∗ =argminE(θ|X)
                                      Mostrar resumen completo Ocultar resumen completo

                                      Similar

                                      Machine Learning
                                      Abhijay Gupta
                                      Python
                                      Jay Prakash
                                      Machine Learning
                                      Luan Pessoa Rocha
                                      Machine Learning
                                      Vinh Phạm
                                      Terminology
                                      hvrd1
                                      Artificial Intellegence
                                      nicky elin
                                      Machine learning: Supervision
                                      Domhnall Murphy
                                      Should You Adopt Cognitive Technology for Your Business or Not?
                                      Cred Force
                                      Técnicas
                                      Lina Ochoa
                                      Relation extraction
                                      François Plesse
                                      Machine Learning
                                      Alberto Ochoa