I A 3 Aprendizagem de máquina

Question 1 of 17

Medal-premium 1

A aprendizagem de máquina é utilizada em grandes volumes de informações e se dividem em supervisionadas e não supervisionadas, auxiliando na mineração de dados, São definições de Aprendizagem de máquina: EXCETO:

Select one of the following:

  • Predição do futuro com base em fatos passados.

  • Aprendem quando há mudança em sua estrutura, em seu programa, em sua base de dados e em suas entradas de maneira que seu comportamento futuro seja melhorado.

  • Adquirir conhecimento ou entendimento, adquirir habilidades através do estudo, instrução ou experiência.

  • Os autores preferem apresentar a aprendizagem de máquina como um ramo da Inteligencia Artificial, a criar uma definição formal para o termo.

  • De forma precisa é a habilidade que pode ser adquirida por animais e máquinas através de treinamento.

Question 2 of 17

Medal-premium 1

Para resolvermos problemas com o auxílio do computador precisamos de um Algoritmo que é uma sequencia de instruções com as quais transformamos entradas em saídas desejadas. São componentes de Algorítimos de aprendizagem de máquina supervisionados. EXCETO:

Select one of the following:

  • Árvore de decisão, mais utilizado na prática e recomendado na mineração de dados onde através da divisão e conquista um grande problema é dividido em pequenos e simples problemas como "sim" e "não" e resolvidos de forma recursiva.

  • Através da Árvore de decisão os atributos são avaliados do nó raiz para os nós inferiores, e a maior dificuldade está na construção da árvore e na determinação da ordem adequada para avaliação dos atributos.

  • deve-se evitar: Erros de generalização e imprecisão, Falsos positivos e falsos negativos,

  • Como resultado podemos ter: Hipótese mais específica e hipótese mais genérica.

  • A Hipótese mais específica e a Hipótese mais genérica ocasiona o aumento do erro de generalização.

Question 3 of 17

Medal-premium 1

No aprendizado de máquina não supervisionado esta recebe um conjunto de entradas, mas nenhum conjunto de saídas correspondentes. Marque a alternativa que não corresponde ao aprendizado não supervisionado.

Select one of the following:

  • Cabe a máquina encontrar padrões e semelhanças entre os dados e a partir desses padrões gerar novas saídas corretas.

  • Descobrir padrões existentes nos daos através de agrupamentos (clusters) permitindo conclusões úteis a respeito deles

  • Identificar o "Outlier", que é um objeto que se difere completamente dos demais e assim não interfere na obtenção dos padrões de classificação.

  • o método de divisão e conquista não visa simplificar os problemas complexos a simples respostas de "sim" e "não".

Question 4 of 17

Medal-premium 1

No que se refere ao aprendizado de máquina, assinale a alternativa CORRETA:

Select one of the following:

  • No aprendizado supervisionado, os dados são processados através de iterações na quais se procuram por padrões ocultos de semelhança.

  • No aprendizado não supervisionado, os dados são agrupados em clusters, de acordo com suas semelhanças ou diferenças.

  • A utilização de dados de treinamento é característica de sistemas que utilizam aprendizado de máquina não supervisionado.

  • A utilização de dados de treinamento é característica de sistemas que utilizam aprendizado de máquina supervisionado.

Question 5 of 17

Medal-premium 1

Avalie as afirmações abaixo, marcando ou clicando somente nas afirmações
verdadeiras.

Select one or more of the following:

  • As árvores de decisão auxiliam os métodos de aprendizado de máquina não supervisionado.

  • O algoritmo k-média se baseia na definição de centros e atualização da posição dos dados em relação a estes centros.

  • Um outlier pode ser definido como uma informação que se diferencia das demais do grupo e, portanto, não tem influência no comportamento geral dele.

  • Um dos objetivos do aprendizado supervisionado é permitir a classificação de informações que não fizeram parte do aprendizado de acordo com as classes de saída definidas nesta etapa.

Question 6 of 17

Medal-premium 1

No Aprendizado supervisionado, para cada sequência de entrada, é dada uma saída desejada, e o objetivo da máquina é aprender a produzir a saída correta para novas entradas, que não fizeram parte de seu conjunto de treinamento.

Select one of the following:

  • True
  • False

Question 7 of 17

Medal-premium 1

No Aprendizado não supervisionado, para cada sequência de entrada, é dada uma saída desejada, e o objetivo da máquina é aprender a produzir a saída correta para novas entradas, que não fizeram parte de seu conjunto de treinamento.

Select one of the following:

  • True
  • False

Question 8 of 17

Medal-premium 1

No Aprendizado não supervisionado, a máquina recebe um conjunto de entradas, mas nenhum conjunto de saída correspondente, e cabe á máquinas encontrar padrões e semelhanças entre os dados, e assim a partir desses padrões gerar novas saídas corretas

Select one of the following:

  • True
  • False

Question 9 of 17

Medal-premium 1

No Aprendizado supervisionado, a máquina recebe um conjunto de entradas, mas nenhum conjunto de saída correspondente, e cabe á máquinas encontrar padrões e semelhanças entre os dados, e assim a partir desses padrões gerar novas saídas corretas

Select one of the following:

  • True
  • False

Question 10 of 17

Medal-premium 1

A "Clusterização" ocorre através de iteração (Iteração é o processo chamado na programação de repetição de uma ou mais ações) ou seja uma sequência de passos em que se busca agrupar os dados de forma que esses agrupamentos chamados clusters façam sentido.

Select one of the following:

  • True
  • False

Question 11 of 17

Medal-premium 1

A generalização consiste n a capacidade de definir, de forma precisa, classes de saída para entradas que não fazem parte do conjunto de treinamento.

Select one of the following:

  • True
  • False

Question 12 of 17

Medal-premium 1

Alternativas para auxiliar a minimizar o erro na generalização do aprendizado de maquina são hipótese mais genérica e a hipótese mais específica.

Select one of the following:

  • True
  • False

Question 13 of 17

Medal-premium 1

A árvore de decisão é um dos métodos de aprendizado mais utilizado na prática, sendo recomendada para a aplicações de mineração de dados.

Select one of the following:

  • True
  • False

Question 14 of 17

Medal-premium 1

Uma árvore de decisão utiliza a estratégia de divisão e conquista, em que um problema mais complexo é dividido em problemas mais simples, que são resolvidos de forma recursiva.

Select one of the following:

  • True
  • False

Question 15 of 17

Medal-premium 1

o principal interesse do aprendizado não supervisionado é desvendar a organização de padrões existentes nos dados, através de agrupamentos (clusters) consistentes, permitindo a descoberta de semelhanças e diferenças entre esses padrões, derivando conclusões úteis a respeito de deles.

Select one of the following:

  • True
  • False

Question 16 of 17

Medal-premium 1

Um dos algoritmos mais conhecidos para realizar agrupamentos de dados é o algoritmos K-médias

Select one of the following:

  • True
  • False

Question 17 of 17

Medal-premium 1

o algoritmos K-médias pode ser utilizado para segmentação se imagens em regiões distintas, pois funciona de forma mais automática do que uma operação de limiarização.

Select one of the following:

  • True
  • False
Icon_fullscreen

I A 3 Aprendizagem de máquina

Alceu  Bernardino
Quiz by , created over 1 year ago

Questões sobre Inteligencia Artificial

Eye 21
Pin 0
Balloon-left 0
Alceu  Bernardino
Created by Alceu Bernardino over 1 year ago
Close