\( x^0 \)

\( x^m * x^n \)

\( \frac{x^m}{x^n} \)

\( (xy)^n \)

\(x^{-m} \)

\( (x^n)^m \)

\( \left( \frac{x}{y} \right) ^n\)

\(e^x\)

If \( b^x = y^x \)

\(\ln(x)\) and \(e^x\) are

\(\ln e^x \)

\( e^{\ln x} \)

\( \ln e \)

\( e^{2 \ln 3} \)