test of revision 1 G9

Question 1 of 7

Medal-premium 1

The GCD of 360 and 48 is

Select one of the following:

  • 24

  • 18

  • 28

Question 2 of 7

Medal-premium 1

(3×10³×3.6×(10²)^3)/(2.7×10⁻⁴)=

Select one of the following:

  • 4×10¹⁰

  • 4×10¹³

  • 4×10¹⁶

Question 3 of 7

Medal-premium 1

If x=(a+b)² and y=(a-b)² then x-y=

Select one of the following:

  • 2ab

  • 3ab

  • 4ab

Question 4 of 7

Medal-premium 1

If A=4√5-4 and B=5√5 then

Select one of the following:

  • A=B

  • A<B

  • A>B

Question 5 of 7

Medal-premium 4

Given the numbers:
A=8/3+5÷(1-2/5) ; B=(55×10³×2¹⁰)/(10⁴×2⁹) ; C=(4+√5)(4-√5) ; D=2√45+√81-3√20+2
then A=B=C=D

Select one of the following:

  • True
  • False

Question 6 of 7

Medal-premium 3

Given: X=3√27+√48+√75 and Y=√12-2√48+√192.
1) Write X and Y in the form of a√b.
2) Compare X and Y.
3) Rationalize the denominator of: X/(Y+1)
4) Assume that the dimensions of the rectangle ABCD are U and V where U=√XY and V=X+Y.
Calculate U and V, then evaluate the area of ABCD.

Select one or more of the following:

  • 1) X=18√3 ; Y=2√3
    2) X>Y
    3) X/(Y+1)=(18√3(2√3-1))/11
    4) U=√XY=6√3 ; V=20√3
    Area=XY=360.

  • 1) Y=18√3 ; X=2√3
    2) X>Y
    3) X/(Y+1)=(18√3(2√3-1))/11
    4) U=√XY=3√3 ; V=2√3
    Area=XY=12.

Question 7 of 7

Medal-premium 2

1) Rationalize the expression: √3/(3√2+√3)
2) Deduce that: √3/(3√2+√3)-(√6-11)/5 is an integer.

Select one or more of the following:

  • ) √3/(3√2+√3)=(√6+1)/5
    2) √3/(3√2+√3)-(√6-11)/5=12/5

  • 1) √3/(3√2+√3)=(√6-1)/5
    2) √3/(3√2+√3)-(√6-11)/5=2

Icon_fullscreen

test of revision 1 G9

zeinabze19
Quiz by , created about 1 year ago

revision: fractions, radical, scientific notation

Eye 79
Pin 0
Balloon-left 0
Tags
zeinabze19
Created by zeinabze19 about 1 year ago
Close