# SISTEMAS de NUMERACIÓN...

Quiz by Ulises Yo, updated more than 1 year ago
 Created by Ulises Yo about 3 years ago
99
0

### Description

Cómo convertir CANTIDADES de una base a otra ...

## Resource summary

### Question 1

Question
Paso de NÚMERO en base DECIMAL a otras BASES... ========================================== DIVISIÓN entera del NÚMERO entre la BASE. RESULTADO: Último COCIENTE con los RESTOS obtenidos (Del último al primero). EJEMPLO. NÚMERO: [ 309 ] a base 4: 309/4 = 77(1)/4 = 19(1)/4 = 4(3)/4 = 1(0) >>> 10311 Paso de BASE a NÚMERO en base DECIMAL ... ===================================== Se SUMAN los PRODUCTOS de cada CIFRA por POTENCIAS de la BASE. EJEMPLO. [ 10311 ] en base 4 a base 10: 1+4¹+3·4²+0·4³+1·4⁴ = 1+4+48+0+256 = [blank_start]309[blank_end]
• 309

### Question 2

Question
NÚMERO: 1 6 3 ============= En base 2 => [163/2] = [blank_start]81[blank_end](1)/2 = [blank_start]40[blank_end](1)/2 = [blank_start]20[blank_end](0)/2 = [blank_start]10[blank_end](0)/2 = [blank_start]5[blank_end](0)/2 = [blank_start]2[blank_end](1)/2 = 1(0) ... >>> [blank_start]10100011[blank_end] En base 5 => [163/5] = 32([blank_start]3[blank_end])/5 = 6([blank_start]2[blank_end])/5 = [blank_start]1[blank_end]([blank_start]1[blank_end]) ... >>> [blank_start]1123[blank_end] En base 8 => [163/8] = 20([blank_start]3[blank_end])/8 = [blank_start]2[blank_end]([blank_start]4[blank_end]) ... >>> [blank_start]243[blank_end]
• 40
• 20
• 10
• 5
• 2
• 81
• 10100011
• 3
• 2
• 1
• 1
• 3
• 4
• 1123
• 243
• 2

### Question 3

Question
NÚMERO: 3.029 ============= En base 4 => [3.029/4] = 757([blank_start]1[blank_end])/4 = 189([blank_start]1[blank_end])/4 = 47([blank_start]1[blank_end])/4 = 11([blank_start]3[blank_end])/4 = [blank_start]2[blank_end]([blank_start]3[blank_end]) ... >>> [blank_start]233111[blank_end] En base 5 => [3.029/5] = [blank_start]605[blank_end](4)/5 = [blank_start]121[blank_end](0)/5 = [blank_start]24[blank_end](1)/5 = [blank_start]4[blank_end](4) ... >>> [blank_start]44104[blank_end] En base 7 => [3,029/7] = 432([blank_start]5[blank_end])/7 = 61([blank_start]5[blank_end])/7 = 8([blank_start]5[blank_end])/7 = [blank_start]1[blank_end]([blank_start]1[blank_end]) ... >>> [blank_start]11555[blank_end] En base 9 => [3.029/9] = [blank_start]336[blank_end](5)/9 = [blank_start]37[blank_end](3)/9 = [blank_start]4[blank_end](1) ... >>> [blank_start]4135[blank_end]
• 1
• 1
• 1
• 3
• 2
• 3
• 233111
• 605
• 121
• 24
• 4
• 44104
• 5
• 5
• 5
• 1
• 1
• 11555
• 336
• 37
• 4
• 4135

### Question 4

Question
NÚMERO: 2 0 7 ============= En base 2 => [207/2] = [blank_start]103[blank_end](1)/2 = [blank_start]51[blank_end](1)/2 = [blank_start]25[blank_end](1)/2 = [blank_start]12[blank_end](1)/2 = [blank_start]6[blank_end](0)/2 = [blank_start]3[blank_end](0)/2 = 1(1) ... >>> 1100 1111 En base 3 => [207/3] = 69([blank_start]0[blank_end])/3 = 23([blank_start]0[blank_end])/3 = 7([blank_start]2[blank_end])/3 = [blank_start]2[blank_end]([blank_start]1[blank_end]) ... >>> [blank_start]21200[blank_end] En base 5 => [207/5] = 41([blank_start]2[blank_end])/5 = 8([blank_start]1[blank_end])/5 = [blank_start]1[blank_end]([blank_start]3[blank_end]) ... >>> [blank_start]1312[blank_end] En base 7 => [207/7] = 29([blank_start]4[blank_end])/7 = [blank_start]4[blank_end]([blank_start]1[blank_end]) ... >>> [blank_start]414[blank_end] En base 9 => [207/9] = 23([blank_start]0[blank_end])/9 > [blank_start]2[blank_end]([blank_start]5[blank_end]) ... >>> [blank_start]250[blank_end]
• 103
• 51
• 25
• 12
• 6
• 3
• 0
• 0
• 2
• 2
• 1
• 21200
• 2
• 1
• 1
• 3
• 1312
• 4
• 4
• 1
• 414
• 0
• 2
• 5
• 250

### Question 5

Question
PASO a BASE DECIMAL ... ==================== 100110 en base 2 => [blank_start]0[blank_end]+[blank_start]1[blank_end]·2+[blank_start]1[blank_end]·4+[blank_start]0[blank_end]·8+[blank_start]0[blank_end]·16+[blank_start]1[blank_end]·32 = [blank_start]38[blank_end] 2031 en base 4 => 1+3·[blank_start]4[blank_end]+0·[blank_start]16[blank_end]+2·[blank_start]64[blank_end] = [blank_start]141[blank_end] 1507 en base 8 => 7+0·[blank_start]8[blank_end]+5·[blank_start]64[blank_end]+1·[blank_start]512[blank_end] = [blank_start]839[blank_end]
• 0
• 1
• 1
• 0
• 0
• 1
• 38
• 4
• 16
• 64
• 141
• 8
• 64
• 512
• 839

### Question 6

Question
PASO a BASE DECIMAL ... ==================== 1202 en base 3 => [blank_start]2[blank_end]+[blank_start]0[blank_end]·3+[blank_start]2[blank_end]·9+[blank_start]1[blank_end]·27 = [blank_start]47[blank_end] 2041 en base 5 => 1+4·[blank_start]5[blank_end]+0·[blank_start]25[blank_end]+2·[blank_start]125[blank_end] = [blank_start]271[blank_end] 1503 en base 9 => 3+0·[blank_start]9[blank_end]+5·[blank_start]81[blank_end]+1·[blank_start]729[blank_end] = [blank_start]1.137[blank_end]
• 2
• 0
• 2
• 1
• 47
• 5
• 25
• 125
• 271
• 9
• 81
• 729
• 1.137

### Question 7

Question
PASO a BASE DECIMAL ... ==================== 310 en base 4 => 0+1·[blank_start]4[blank_end]+3·[blank_start]16[blank_end] = [blank_start]52[blank_end] 1402 en base 5 => [blank_start]2[blank_end]+[blank_start]0[blank_end]·5+[blank_start]4[blank_end]·25+[blank_start]1[blank_end]·125 = [blank_start]227[blank_end] 3057 en base 9 => 7+5·[blank_start]9[blank_end]+0·81+3·[blank_start]729[blank_end] = [blank_start]2.239[blank_end]
• 4
• 16
• 52
• 2
• 0
• 4
• 1
• 227
• 9
• 729
• 2.239

### Similar

CÁLCULO MENTAL
FRACCIONES...
FRACCIONES...
CÁLCULOS con [ 3 · 5 · 7 ]
7 Técnicas para Aprender Matemáticas
Fórmulas Geométricas (Perímetros)
Matemáticasen la VidaCotidiana