NBT Toets 9

Rika Grobler
Quiz by Rika Grobler, updated 11 months ago
Rika Grobler
Created by Rika Grobler over 5 years ago
38
1

Description

Toets om leerlinge te help met NBT
Tags

Resource summary

Question 1

Question
Vereenvoudig/ Simplify \(\sqrt{25x^{16}-9x^{16})}\)
Answer
  • \(2x^8\)
  • \(2x^4\)
  • \(4x^8\)
  • \( \pm 4x^4\)

Question 2

Question
Die draaipunt van die funksie gedefinieer deur \(f(x)=x^2-4x-12\) is The turning point of the graph defined by \(f(x)=x^2-4x-12\) is
Answer
  • (2; -16)
  • (-2; -16)
  • (-2; 16)
  • (2; 16)

Question 3

Question
Die uitdrukking/ The expresssion \(f(x)=\sqrt{-x^2+4x+12}\)
Answer
  • het 'n minimum waarde van 4/ has a minimum value of 4
  • het 'n maksimum waarde van 4/ has a maximum value of 4
  • het 'n maksimum waarde van -4/ has a maximum value of -4
  • het 'n minimum waarde van -4/ has a minimum value of -4

Question 4

Question
Die funksie gedefinieer deur \(f(x)=x^2-4x-6\) het 'n The function defined by \(f(x)=x^2-4x-6\) has a
Answer
  • minimum \(y\) waarde en 'n negatiese \(y\) afsnit. / minimum \(y\) value and a negative \(y\) intercept.
  • maksimum \(y\) waarde en 'n positiewe \(y\) afsnit/ maximum \(y\) value and a positive \(y\) intercept.
  • minimum \(y\) waarde en 'n positiewe \(y\) afsnit/ minimum \(y\) value and a positivev\(y\) intercept.
  • maksimum \(y\) waarde en 'n negatiewe \(y\) afsnit/ maximum \(y\) value and a negative \(y\) intercept.

Question 5

Question
Die funksie gedefinieer deur \(f(x)=x^2-4x-6\) word gegee. Verder is \(g(x)=f(2x)-1\). Dus is \(g(x)\)= The function defined by \(f(x)=x^2-4x-6\) is given. Further \(g(x)=f(2x)-1\). Thus \(g(x)\)=
Answer
  • \(2x^2-8x-7\)
  • \(4x^2-8x-7\)
  • \(4x^2-8x-5\)
  • \(2x^2-8x-5\)

Question 6

Question
\(2sin^215^\circ -1=\)
Answer
  • \(\frac{1}{2}\)
  • \(-\frac{1}{2}\)
  • \(\frac{\sqrt3}{2}\)
  • \(-\frac{\sqrt3}{2}\)

Question 7

Question
Die oppervlak van die vierkant ABCD = \(x^2-2x+1\) word gegee. As FC = 1, bepaal die omtrek van die reghoek ABFE. The area of ​​the square ABCD = \(x^2-2x+1\) is given. If FC = 1, determine the perimeter of the rectangle ABFE.
Answer
  • \(2x-1\)
  • \(x^2-x\)
  • \(4x-2\)
  • \(x^2\)

Question 8

Question
Die definisieverameling (gebied) van \(\frac{1}{\sqrt{20-2x}}-\frac{1}{\sqrt{x-5}}\) is The domain of \(\frac{1}{\sqrt{20-2x}}-\frac{1}{\sqrt{x-5}}\) is
Answer
  • \(x<5\)
  • \(x>10\)
  • \(x<5\) of \(x>10\)
  • \(5<x<10\)

Question 9

Question
Gegee die funksie \(f(x)=-x^2\) vir \(x \in [0; \infty ) \). Dan is die waarde van \(f^{-1}(-4)=\) Given the function \(f(x)=-x^2\) for \(x \in [0; \infty ) \). Then the value of \(f^{-1}(-4)=\) is
Answer
  • 2
  • -2
  • \( \pm 2\)
  • nie reëel/ not real

Question 10

Question
Wat is die grootste reghoekige kamp wat 'n boer kan maaak met 600m draad in \(m^2\) What is the largest rectangular camp a farmer can do with 600m of wire in \(m^2\)
Answer
  • 22000
  • 22500
  • 36000
  • 36500

Question 11

Question
Vir watter waardes van \(x\) is \(\frac{x(x-1)}{(x+2)(x+3)}\) ongedefinieerd? For which values of \(x\) is \(\frac{x(x-1)}{(x+2)(x+3)}\) undefined?
Answer
  • 0; 1; -2; -3
  • 0; 1
  • -2; -3
  • 1; -2; -3

Question 12

Question
Beksou die skets. die waarde van c is Consider the sketch. is the value of c
Answer
  • \(\frac{5\sqrt2}{2}\)
  • \(\frac{5\sqrt6}{2}\)
  • \(\frac{\sqrt3}{20\sqrt2}\)
  • \(5\sqrt6\)

Question 13

Question
Verander die volgende eksponent in 'n logaritme: \(4^{-2}=\frac{1}{16}\) Change the following exponent into a logarithm: \(4^{-2}=\frac{1}{16}\)
Answer
  • \(log_{-2}4=16\)
  • \(log_{-2}4=\frac{1}{16}\)
  • \(log_\frac{1}{16}4=-2\)
  • \(log_4\frac{1}{16}=-2\)

Question 14

Question
Die hoogte van 'n reghoekige silinder is 5 en die deursnee van die basis is 2. Wat is die volume van die silinder? The height of a rectangular cylinder is 5 and the diameter of the base is 2. What is the volume of the cylinder?
Answer
  • 20
  • 15
  • 5
  • 10

Question 15

Question
In die skets is PQRS 'n reghoek. Die oppervlakte van \(\Delta\)RST is 6 en \(PT=\frac{2}{5}PS\). Wat is die oppervlakte van PQRS? In the sketch, PQRS is a rectangle. The area of \(\Delta\) RST is 6 and \(PT=\frac{2}{5}PS\). What is the area of ​​PQRS?
Answer
  • 20
  • 18
  • 12
  • 10

Question 16

Question
In 'n verkiesing is daar 'n totaal van 120 000 stemme in 'n distrik met kandidate A en B. As A wen met 'n verhouding 5 : 3 , hoeveel stemme het party B gekry? In an election, there are a total of 120,000 votes in a district with candidates A and B. If A wins with a 5: 3 ratio, how many votes did party B get?
Answer
  • 15 000
  • 30 000
  • 45 000
  • 75 000

Question 17

Question
As \(n\) en \(k\) positiewe heelgetalle is en \(8^n=2^k\), wat is die waarde van \(\frac{n}{k}\) If\(n\) and \(k\) are positive integers and \(8^n=2^k\), what is the value of \(\frac{n}{k}\)
Answer
  • \(\frac{1}{4}\)
  • \(\frac{1}{3}\)
  • 4
  • 3

Question 18

Question
As \(18+x\) vyf meer is as twee keer \(x\), wat is die waarde van \(2x\)? If\(18+x\) is five more than twice \(x\), what is the value of \(2x\)?
Answer
  • 26
  • 50
  • 20
  • 65

Question 19

Question
As \(x\) en \(y\) heelgetalle is en \(7<y<16\) en \(\frac{x}{y}=\frac{2}{5}\), hoeveel moontlike waardes kan \(x\) hê? If\(x\) and\(y\) are integers and \(7<y<16\) and \(\frac{x}{y}=\frac{2}{5}\), how many values can \(x\) have?
Answer
  • 1
  • 2
  • 3
  • 4

Question 20

Question
Gegee die data: 10; 18; 4; 15; 3; 21; \(x\). As \(x\) die mediaan van die sewe getalle is, watter van die volgende kan die waarde van \(x\) wees: Given the data: 10; 18; 4; 15; 3; 21; \(x\). If \(x\ is the median of the seven numbers, which of the following can be the value of \(x\):
Answer
  • 5
  • 9
  • 14
  • 16
Show full summary Hide full summary

Similar

PSBD TEST # 3_1
Suleman Shah
1PR101 2.test - Část 7.
Nikola Truong
Mapas mentales con ExamTime
Nazareth Olivo
LA INICIACION LITERARIA
Monica Violeta Toro López
Branding: Adidas
Gabriela Sánchez Idrovo
Primera guerra mundial
aleja sanchez
ESTADO E RELAÇAO DE PODER
Adeildoethatiane Silva
INTRODUCCION A LA ESTADISTICA
IBETH CAROLINA GUERRERO RODRIGUEZ
Reto 2 Apropiacion Unadista
Lilibeth Polo Porto
New English Literature GCSE
Monica Harris