Zusammenfassung der Ressource
Matemática-1º Período
- Conjuntos Numéricos
- Inteiros(Z)={...-1,0,1...
- Naturais(N)={0,1,2,3...}
- Racionais(Q)={5.777...,2/4}
- Irracionais(I)={3.479...,√2,π}
- Reais(R)={Q + I}
- Teoria de Conjuntos
- Complementar: CaB= completar de bem a
- Diferença: A-B= A menos B
- Interseção: A∩B= A interseção com B
- Inclusão: ACB= A contido em C
- Desigualdade: A≠B= A diferente de B
- Igualdade: A=B= A igual ao B
- Reunião: AUB= A união com B
- Pertinência: ∈= pertence/ ∉= não pertence
- ⊃= contém/ ⊅= não contém
- Funções
- Trigonométricas
- Seno - f(x)=sen x
- Cosseno - f(x)= cos x
- Logarítmica
- Crescente
- Decrescente
- Exponencial
- a>1
- 0<a<1
- Quadrática
- a>0
- a<0
- Afim
- função crescente
- função decrescente
- Progressões
- P.A.
- Crescente:(1,5,9,13,17...) r=4
- Decrescente:(10,8,6,4...) r=-2
- Constante:(3,3,3,3...) r=0
- Termos de uma P.A.= an = a1+ (n – 1). r
- Soma de uma P.A.=Sn = n(a1 + an)/2
- P.G.
- Crescente: (2, 10, 50, 250, …) q = 5
- Constante: (2, 2, 2, 2, 2, 2), q = 1,
- Decrescente;(-1, -3, -9, -27, -81, ...)q = 3
- Oscilante:(2,4,-8,16,-32,64...), q=-2
- Termo geral de uma PG: an = a1·qn – 1
- Soma dos termos de uma PG=Sn = a1 (qn -1) /q- 1
- Equações e inequações
- Equação do Primeiro Grau (2.x = 4)
- Equação do Segundo Grau Completa (o 5x2 + 2x + 2 = 0)
- Equação do 2ºgrau Incompleta (7x²-18x+3=0)
- Inequação do Primeiro Grau (3x + 19 < 40)
- Inequação do Segundo Grau( x2 - 1x - 6 < 0)
- Matrizes
- Matrizes especiais
- Matriz Linha
- Matriz Coluna
- Matriz Nula
- Matriz Quadrada
- Matriz identidade Os elementos da diagonal principal são
iguais a 1 e os demais elementos são iguais a zero.
- Matriz inversa Uma matriz quadrada B é inversa da matriz quadrada A quando a
multiplicação das duas matrizes resulta em uma matriz identidade
- Matriz transposta É obtida com a troca ordenada das linhas e colunas de uma matriz
conhecida
- Matriz oposta É obtida com a troca de sinal dos
elementos de uma matriz conhecida
- Igualdade de matrizes Matrizes que são do mesmo tipo e
possuem elementos iguais
- Operações entre Matrizes
- Adição de matrizes Uma matriz é obtida pela soma dos elementos de matrizes do
mesmo tipo. Exemplo: A soma entre os elementos da matriz A e B produz uma
matriz C
- Subtração de matrizes Uma matriz é obtida pela subtração dos elementos de
matrizes de mesmo tipo. Exemplo: A subtração entre elementos da matriz A e B
produz uma matriz C
- Multiplicação de matrizes A multiplicação de duas matrizes, A e B, só é possível se o
número de colunas de A for igual ao número de linhas de B