|
|
Created by Madison Lowe
about 8 years ago
|
|
| Question | Answer |
| f(x) | = f ‘ (x) |
| k | = 0 |
| x^n | = n * x^(n-1) |
| e^x | =ln |
| ln(x) | = 1/x |
| √x | = 1/2 |
| sin(x) | = cos(x) |
| cos (x) | = -sin(x) |
| tan(x) [sin(x)/cos(x)] | = sec^2 (x) |
| Cot(x) [cos(x)/sin(x)] = 1/tan(x) | = -csc^2 (x) |
| sec(x) [1/cos(x)] | = tan(x) * sec(x) |
| csc(x) [1/sin(x)] | = -cot(x) * csc(x) |
| arcsin(x) | = 1/(√ 1-x^2) |
| arccos(x) | = - 1/(√ 1-x^2) |
| arctan(x) | = 1/(1+x^2) |
| b^x | b^x * ln(b) |
Want to create your own Flashcards for free with GoConqr? Learn more.