MAPA CONCEPTUAL MATEMATICAS

Ana Maria Hurtado Bocarejo
Flowchart by , created about 2 years ago

Flowchart on MAPA CONCEPTUAL MATEMATICAS, created by Ana Maria Hurtado Bocarejo on 08/03/2017.

8
2
0
Tags No tags specified
Ana Maria Hurtado Bocarejo
Created by Ana Maria Hurtado Bocarejo about 2 years ago
Chemistry Module C2: Material Choices
James McConnell
Chemistry (C1)
Phobae-Cat Doobi
GCSE Maths Conversions
EmilieT
The Tempest Key Themes
Joe Brown
Using GoConqr to teach Maths
Sarah Egan
The Geography Of Earthquakes
eimearkelly3
Constitutional Law
jesusreyes88
Plano de Revisão Geral
miminoma
A-Level Physics: Course Overview
cian.buckley+1
Resumo global da matéria de Biologia e Geologia (10.º e 11.º anos)
miminoma

Flowchart nodes

  • FUNDAMENTOS DE LAS MATEMÁTICAS
  • Estudio de conceptos matemáticos básicos, que forman jerarquías de estructuras fundamentales para el lenguaje de la matemáticas.
  • Definidas como
  • Las cuales son
  • REGLA DE TRES
  • TEORÍA DE NÚMEROS
  • INTRODUCCIÓN AL ÁLGEBRA
  • FACTORIZACIÓN
  • ECUACIONES
  • Operación matemática
  • La cuál
  • Ayuda a Resolver problemas de proporcionalidad
  • Denominada como
  • Por medio de
  • El calculo de una magnitud incógnita
  • Simple
  • Compuesta
  • 2  magnitudes
  • + de dos magnitudes
  • Directa
  • Inversa
  • Las dos aumentan o disminuyen
  • Una aumenta y la otra disminuyee
  • simple
  • directa
  • mixta
  • Directamente proporcionales ( DP)
  • Inversamente proporcionales ( IP)
  • (DP) Y (IP)
  • Estudia
  •  Las propiedades de los números
  • Logaritmación
  • Radicación
  • Potenciación
  • Números Reales
  • Divididos en 
  • Racionales
  • Irracionales
  • Números fraccionarios y enteros
  • No se puede escribir en fracción y los decimales no siguen ningún patrón   
  • Operación matemática
  • Dos términos denominados base a y exponente n
  • Definida como
  • Entre
  • Multiplicación de potencia
  • División de potencias
  • Potencia de una potencia
  • Divido en las propiedades
  • Potencia en base de 10
  • Potencia de un producto
  • Propiedad distributiva
  • Operación matemática Inversa a la potenciación
  • Caracterizada por ser 
  •  la raíz y el índice
  • Conformado por
  • Divido en las propiedades
  • Raíz de un producto
  • Raíz de un cociente
  • Raíz de una raíz
  • Raíz de una potencia
  • La base de la potencia
  • Busca
  • Operación matemática
  • simplifica un calculo
  • Exponente de una base
  • Expresión de una
  • La cúal
  • Buscando el
  • Abreviatura Log.
  • el subindice de la base
  • Número resultante del que se hallara el logaritmo
  • Desarrollada con
  • Hallar 2 o + factores cuyo producto es =  a la expresión propuesta
  • Técnica para
  • Divida en
  • Factor común
  • Diferencia de Cuadrados perfectos
  • Trinomio cuadrado perfecto
  • Trinomio de la forma
  • Suma y  resta de cubos perfectos
  • Trinomio de la forma  
  • Desarrollada con
  •  Obtención del MCD
  • El producto de todos sus factoreS
  • Realización la propiedad distributiva
  • Aplicación MCD en todos los términos
  • Dado cuando
  • 2 de sus términos son cuadrados perfectos y el otro es el doble de la base de los 2 anteriores
  • Sacar raíz cuadrada del 1° y 3° término
  • Identificando el signo del segundo
  • Elevando la respuesta al cuadrado
  • Solamente en binomios, donde el primer término es positivo y el segundo término es negativo
  • Se saca la raíz cuadrada  
  •  De los términos A Y B
  • Termina con la suma (a5 + b2) , la multiplicamos por su diferencia y  se obtiene la factorización
  • Aplica 
  •  dos factores
  • 2 números que sumados algebraicamente sean
  • Coeficiente del segundo término b
  • Multiplicados por el tercer término c.
  • Se descompone en 
  • Se busca 
  • Extraer la raíz cubica de cada termino, buscando formar un producto de 2 factores
  • La suma de las raíces cubicas de los términos
  • El cuadrado de la primera  raiz, menos el producto de estas raíces
  •  Más el cuadrado de la segunda raíz
  • Obtenido al
  • 2 enteros  que sumados sean igual a y b
  • Multiplicados sean igual “a” ”c”
  • Usamos agrupación y propiedad distributiva 
  •  Para factorizar el polinomio
  • Elaborados con
  • Igualdad de la cual se desconoce un termino ( variable)
  • Ecuaciones de Segundo Grado
  • Ecuaciones de primer grado
  • El exponente de la incógnita es 1
  • Forma de una suma algebraica de términos cuyo grado máximo es 2
  • En una incógnita
  • En dos incógnitas
  •  Se reducen los términos semejantes, cuando es posible.
  • Se hace la transposición de términos (aplicando inverso aditivo o multiplicativo), los que contengan la incógnita se ubican en el miembro izquierdo, y los que carezcan de ella en el derecho.
  •  Se reducen términos semejantes, hasta donde es posible.
  • Se despeja la incógnita, dividiendo ambos miembros de la ecuación por el coeficiente de la incógnita (inverso multiplicativo), y se simplifica.
  • Se haya el valor de dos variables x , y
  •  Se Toma a una de las variables igual a y se sustituye en la ecuación  
  • obteniendo el valor de las variables X, Y  se sustituye en la ecuación y se halla el valor 
  • Expresada de la forma
  • Con la formula
  • Para resolver, se reemplazan las magnitudes de la forma con la formula
  • Por medio de
  • Cualquier producto de números y variables
  • Binomio
  • Trinomio
  • Polinomio
  • Monomio
  •  Se suman monomios
  • Dos (2)
  • Tres ( 3)
  • Más de 3
  • Explicado como la
  • Divididas en
  • Como
  • Como
  • Elaborado por: Ana Maria Hurtado    Lorena Sánchez Sánchez  Martha Colorado Prieto Paola Preciado Paola Villareal Fuentes Maria Acevedo Castañeda Laura Valentina Cardozo