Processing math: 100%

Econometrics II

Descrição

Flashcards for Graduate-level econometrics.
Max Schnidman
FlashCards por Max Schnidman, atualizado more than 1 year ago
Max Schnidman
Criado por Max Schnidman mais de 5 anos atrás
20
0
1 2 3 4 5 (0)

Resumo de Recurso

Questão Responda
Loss functions Measure of distance between observed values and estimates L(yθ(x))
Squared loss function Minimizes squared distance between observed and estimated values Optimal is Conditional Expectation Function E[Y|X]
E[(yθ)2|X]=E[((yμx)(θμx))2|X]
=V(y|x)+(θμx)
Properties of the CEF θ(x)=argminE[(yc)2|X]
ϵ=YE[Y|X]E[ϵ|X]=0
E[Xϵ|X]=0
E[h(X)ϵ|X]=0
V(ϵ)=E[V(Y|X)]
C(X,ϵ)=0
Best Linear Predictor (BLP) Xβ
β=argminE[(YXβ)2]
E[X(YXβ)]=0
=E[XX]1E[XY]
V(U)=E[V(Y|X)]+E[ω2]
Omega is difference between CEF and BLP
Properties of i.i.d. sampling E[Yi]=μ
V(Yi)=σ2
C(Yi,Yj)=0
Sample average converges to population average V(ˉY)=σ2n
Mean Squared Error Sum of Squared Bias and Variance
Asymptotic properties of samples plimˉY=μ
plimV(Y)=0
Central Limit Theorem
Uniform Kernel Estimate frac1/nyi1(|xix0|δn)1/n1(|xix0|δn)
Limiting Distribution: N(α,β)
Matrix Algebra of Regressions bn=(XX)1(XY)=Q1XY=AY
ˆY=X(XX)1XY=NY
e=YˆY=YNY=(IN)Y=MY
Limiting distribution of beta N(0,E[XX]1E[XXU2]E[XX]1
Sandwich form, robust against HESKD. If model HOSKD, σ2E[XX]1
CRM assumtions 1.E[Y|X]=Xβ
2.V(Y|X)=σ2I
3.Rank(X)=k
4. X is non-stochastic.

0 comentários

There are no comments, be the first and leave one below:

Semelhante

Using GoConqr to study Economics
Sarah Egan
Economics
Emily Fenton
Economics - unit 1
Amardeep Kumar
AN ECONOMIC OVERVIEW OF IRELAND AND THE WORLD 2015/16
John O'Driscoll
SAMPLING
Elliot O'Leary
Using GoConqr to teach Economics
Sarah Egan
Functions of Money
hannahcollins030
ECO 351 - Business Statistics II - Problem Set 2
LemonKing
Comparative advantage
jamesofili
FREQUENCY TABLES: MODE, MEDIAN AND MEAN
Elliot O'Leary