Integration Questions

Description

Integration Questions
Doc Boff
Slide Set by Doc Boff, updated more than 1 year ago
Doc Boff
Created by Doc Boff about 7 years ago
0
0

Resource summary

Slide 1

Slide 2

    1. y=(x-1)(3x+9) = 3x^2+6x-9 , 5∫1 (3x^2+6x-9) dx ; [3x^3/3 + 6x^2/2 - 9^2/2]^(5 1) , (3(5)^3/3 + 6(5)^2/2 - 9^2/2) - (3(1)^3/3 + 6(1)^2/2 - 9^2/2) = 160 = A 2.  2∫1 (x^2-x)dx = -1/6 , 2∫0 (x^2-x)dx = 2/3 , so 2/3 - (-1/6) = 5/6. 1∫0 (x^2-x)dx = -1/6 , so 5/6 + 1/6 = 1. Area = 1 3. Cube root of 8=2, so 2∫0 (x^3)dx = 4. Now we find the entire area of the rectangle and take this away, so 2 x 8 =16, and 16/4=12, so A=12 4. The missing x-coordinate is 3, as we get this when we factorise the function. Now 3∫0 (-x^2-3x) = 9/2. We add this the the area of the triangle next, so 9/2 + 3x2 / 2 = 7.5 (Area) 5. To find the missing x-coordinate, we could use a simultaneous equation, so root(x)=x^2, x=x^3 so therefore x must equal 1. Now do 1∫0 (root(x))dx - 1∫0 (x^2)dx = 1/3        
    Answers (left to right)

Slide 3

Slide 4

    Answer
    Use simultaneous equation to find x-coordinate of intersection ; 3x=5x-x^2 , x^2-2x=0 , so x=0 or 2. Now find the area under the curve ; 2∫0 (5x-x^2)dx = 22/3 Area under line ; 2∫0 (3x)dx = 6 Subtract ; 22/3 - 6 = 4/3, so area = 4/3.

Slide 5

    1. 5∫4 (2A^2-6x^2)dx = 120A. Find the value of A 2. 4∫1 (A-2root(x))^2 dx = 10-A^2. Find the value of A.
    Questions

Slide 6

    1. [2A^2x -6x^3/3]^(5 4) -> (2A^2(5) -6(5)^3/3) - (2A^2(4)-6(4)^3/3) = 120A. Collect together: 2A^2-120A-122=0. Solve for: A=61 or -1 2. 4∫1 (A^2-4Ax^(1/2)+4x) , [A^2x-4Ax^(3/2) / 3/2 + 4x^2/2]^(4 1) [A^2(4)-4A(4)^(3/2) / 3/2 + 4(4)^2/2] - [A^2(1)-4A(1)^(3/2) / 3/2 + 4(1)^2/2] Collect to get: 3A^2-32A / 3/2 + 4A / 3/2 +30 = 10-A^2 Rearrange: 4A^2 - 56/3A +20 =0 Solve for A= 3 or 5/3.
    Answers
Show full summary Hide full summary

Similar

Fractions and percentages
Bob Read
GCSE Maths Symbols, Equations & Formulae
Andrea Leyden
FREQUENCY TABLES: MODE, MEDIAN AND MEAN
Elliot O'Leary
HISTOGRAMS
Elliot O'Leary
CUMULATIVE FREQUENCY DIAGRAMS
Elliot O'Leary
GCSE Maths: Geometry & Measures
Andrea Leyden
GCSE Maths: Understanding Pythagoras' Theorem
Micheal Heffernan
Using GoConqr to study Maths
Sarah Egan
New GCSE Maths
Sarah Egan
Maths GCSE - What to revise!
livvy_hurrell
GCSE Maths Symbols, Equations & Formulae
livvy_hurrell