Question | Answer |
Fourier Series |
f(x)=1√2L∑ncneinπx/L
cn∫L−Lf(x)e−inπx/Ldx |
Residue Theorem |
∮Cf(z)dz=2πi∑residue
The sum of the residue for singularities contained by the contour.
res(z=z0)=limz→z0[1(p−1)!dp−1dzp−1((z−z0)pf(z))]
where p is the order of the pole.
|
Symmetric Matrices |
AT=A |
Antisymmetric Matrices |
AT=−A |
Orthogonal Matrices |
A−1=AT |
Hermitian Matrices |
A†=A |
Antihermitian Matrices |
A†=−A |
Unitary Matrices |
A−1=A† |
Normal Matrices |
A†A=AA† |
Determinant and Trace Based on Eigenvalues |
detA=∏iλi
trA=∑iλi |
Linear Dependence |
a set is linearly dependent if
n∑i=1ai→vi=0
for any set {ai} except ai=0⋅→vi
→v3=a1→v1+a2→v2 |
Cauchy-Riemann Conditions |
∂u∂x=∂v∂y
∂v∂x=−∂u∂y |
Fourier Transform |
Fourier transform of f(x):
˜f(w)=1√2π∫∞−∞f(x)e−iwxdx
Inverse operation:
f(x)=1√2π∫∞−∞˜f(w)eiwxdw |
Fourier Representation of a Dirac Delta Function |
δ(t)=12π∫∞−∞eiwtdw |
Pole of Order n |
if n=1 it is a simple pole
limz→z0[(z−z0)nf(z)]≠0
f(z)=g(z)(z−z0)n
g(z) is analytic
|
Green's Function |
LG(x,x′)=δ(x−x′) |
There are no comments, be the first and leave one below:
Want to create your own Flashcards for free with GoConqr? Learn more.