{"ad_unit_id":"App_Resource_Sidebar_Upper","resource":{"id":19975465,"author_id":8029839,"title":"Teorema de la Tangente","created_at":"2019-10-28T16:05:22Z","updated_at":"2019-10-29T01:04:49Z","sample":false,"description":null,"alerts_enabled":true,"cached_tag_list":"","deleted_at":null,"hidden":false,"average_rating":null,"demote":false,"private":false,"copyable":true,"score":20,"artificial_base_score":0,"recalculate_score":false,"profane":false,"hide_summary":false,"tag_list":[],"admin_tag_list":[],"study_aid_type":"MindMap","show_path":"/mind_maps/19975465","folder_id":23355327,"public_author":{"id":8029839,"profile":{"name":"Majo Correa5542","about":null,"avatar_service":"google","locale":"es-ES","google_author_link":null,"user_type_id":245,"escaped_name":"Majo Correa","full_name":"Majo Correa","badge_classes":""}}},"width":300,"height":250,"rtype":"MindMap","rmode":"canonical","sizes":"[[[0, 0], [[300, 250]]]]","custom":[{"key":"rsubject","value":"Español"},{"key":"rlevel","value":"décimo"},{"key":"env","value":"production"},{"key":"rtype","value":"MindMap"},{"key":"rmode","value":"canonical"},{"key":"sequence","value":1},{"key":"uauth","value":"f"},{"key":"uadmin","value":"f"},{"key":"ulang","value":"en_us"},{"key":"ucurrency","value":"usd"}]}
{"ad_unit_id":"App_Resource_Sidebar_Lower","resource":{"id":19975465,"author_id":8029839,"title":"Teorema de la Tangente","created_at":"2019-10-28T16:05:22Z","updated_at":"2019-10-29T01:04:49Z","sample":false,"description":null,"alerts_enabled":true,"cached_tag_list":"","deleted_at":null,"hidden":false,"average_rating":null,"demote":false,"private":false,"copyable":true,"score":20,"artificial_base_score":0,"recalculate_score":false,"profane":false,"hide_summary":false,"tag_list":[],"admin_tag_list":[],"study_aid_type":"MindMap","show_path":"/mind_maps/19975465","folder_id":23355327,"public_author":{"id":8029839,"profile":{"name":"Majo Correa5542","about":null,"avatar_service":"google","locale":"es-ES","google_author_link":null,"user_type_id":245,"escaped_name":"Majo Correa","full_name":"Majo Correa","badge_classes":""}}},"width":300,"height":250,"rtype":"MindMap","rmode":"canonical","sizes":"[[[0, 0], [[300, 250]]]]","custom":[{"key":"rsubject","value":"Español"},{"key":"rlevel","value":"décimo"},{"key":"env","value":"production"},{"key":"rtype","value":"MindMap"},{"key":"rmode","value":"canonical"},{"key":"sequence","value":1},{"key":"uauth","value":"f"},{"key":"uadmin","value":"f"},{"key":"ulang","value":"en_us"},{"key":"ucurrency","value":"usd"}]}
Es un teorema de la trigonometría que permite conocer los lados y ángulos de un triángulo oblicuo.
Para aplicar la ley de tangente se deben conocer dos lados del triángulo y un ángulo, por ejemplo,
conocer a, b y C; o bien, dos ángulos y uno de los lados del triángulo, como por ejemplo tener los
valores de A, B y c.
LAS FORMULAS
a - c / a + c = tan ( A - C / 2 ) / tan ( A + C / 2 )
b - c / b + c = tan ( B - C / 2 ) / tan ( B + C / 2 )
a - b / a + b = tan ( A - B / 2 ) / tan ( A + B / 2 )
EJERCICIOS DE APLICACION
La razón entre la suma de dos lados (a, b o c) de un triángulo y su
resta es igual a la razón entre la tangente de la media de los dos
ángulos opuestos a dichos lados y la tangente de la mitad de la
diferencia de éstos.