General Physics Final

Mind Map by , created almost 6 years ago

Mind Map on General Physics Final, created by jvogan on 12/09/2013.

Tags No tags specified
Created by jvogan almost 6 years ago
GCSE Maths: Geometry & Measures
Andrea Leyden
Health and Social Care
Kelsey Phillips
Introduction to the Atom
Sarah Egan
CCNA Security 210-260 IINS - Exam 1
Mike M
Jobs in child care
Katie Strucinskaja
Photosynthesis and Respiration Quiz
Selam H
Aggression mind-map for A2 AQA Psychology
SAT Math Sample Questions
SAT Prep Group
Break-even Analysis - FLASH CARDS
Harshad Karia
General Physics Final
1 Chapter 14
1.1 Thermodynamics
1.1.1 0th law Ta=Tb=Tc
1.1.2 focuses on energy conservation of energy transfer of energy
1.2 Temperature & Heat
1.2.1 based on hotness or coldness
1.2.2 thermal equilibrium Ta=Tb=Tc heat flow
1.2.3 heat energy flows between two systems Joule J Calorie 1 cal=4.186J =1000 calories
1.2.4 3 scales fahrenheit freeze at 32 boil at 212 Tf=9/5tc+32 Kelvin freeze at 273.15 boil at 373.14 Tk=Tc+273.15 absolute 0 at 0 Celsius freeze at 0 boil at 100
1.3 Phases of Matter
1.3.1 Solid atoms held in place by forces from next atom
1.3.2 Liquid atoms able to move about
1.3.3 Gas density lower than liquid
1.3.4 Internal Energy U phase change phase diagram melting freezing evaporation sublimation heat capacity = q/delta(t) specific heat = c=Q/mdelta(T) latent heat of fusion latent heat of vaporization
2 Chapter 15
2.1 Gasses and Kinetic Theory
2.1.1 Gas Laws Ideal Gas Law dilute gass Pv=nRT R=8.31J/mole*K n=number of moles present Kb=Boltzmanns Constant 1.38e-23J/K Avogadros Law V proportional to N Boyles Law P proportional to 1/v for constant temp Charles law V proportional to T for constant pressure Gay-Lussacs Law P proportional to T for constant volume
2.1.2 Kinetic Theory 3/2KbT Molecular Speeds v=sqrt((3KbT/M))
2.2 Avogadros Number
2.2.1 Na=6.023e23 Pure number
2.2.2 Number of particles in a mole
2.3 atomic mass
2.3.1 M=M/Na
3 Chapter 16
3.1 Thermodynamics
3.1.1 Quantities Used to describe systems Pressure Volume Temperature
3.2 Four Laws
3.2.1 Zeroth Law Based on idea of thermal equilibrium If ta=tb and tb=tc then ta=tc
3.2.2 First Law U=3/2KbT or 3/2nRT Thermal Reservoir Work W=Padeltax=PdeltaV Thermodynamic Processes Isobaric Constant Pressure W=PdeltaV=P(V1-V2) IsoThermal Constant Temperature W=nRTln(Vf/Vi) Expansion Compression Adibiatic Heat Q=0 P proportional to 1/Vf Isochoric Constant volume W=PdeltaV=0
3.2.3 2nd law Heat cannot flow from cold to hot Heat Engine Qh=W Carnot Engine Reversible Heat Engine Qc must be low Qc/Qh=Tc/Tn e=1-Tc/th
4 Exam 1
4.1 Chapter 2
4.1.1 Inertia
4.1.2 Newtons Laws of Motion
4.1.3 Motion
4.1.4 Velocity
4.2 Chapter 3
4.2.1 Normal Forces
4.2.2 Friction
4.2.3 Velocity Vs Time
4.3 Chapter 4
4.3.1 Projectile Motion
4.3.2 Friction Kinetic Static
4.3.3 Newtons Laws First Law 2nd law F=ma 3rd law
5 Exam 2
5.1 Chapter 8
5.1.1 Torque
5.1.2 Equilibrium
5.1.3 Rotational Inertia
5.2 Chapter 6
5.2.1 Energy
5.2.2 Conservation of Energy
5.2.3 Work Joule Unit Can be + or - 1d motion w=fdeltax scalar
5.3 Chapter 5
5.3.1 Gravitation
5.3.2 Circular Motion Period of Motion t=2pi(r)/V acceleration not constant centripital acceleration center seeking magnitude ac=v^2/r
5.4 Chapter 7
5.4.1 Center of Mass
5.4.2 Impulse
5.4.3 collisions
5.4.4 momentum p=mv kgm/s
6 Exam 3
6.1 Chapter 10
6.1.1 Buoyancy Archimedes Principle applies to objects immersed in fluids floating fully immersed apparent weight buoyant force Fb=p(rho)*g*V
6.1.2 Pressure and Density Patm=1.01x10^5 Pa Pascal Unit 1pa=1N/m^2 density p(rho)=m/v kg/m^3 unit force perpendicular to area a=area p=f/a f=pa f=magnitude
6.1.3 Pascals Principle hydraulic lift Fl=Fr*(Al/Ar)
6.1.4 Effects of Gravity specific gravity determines if object will sink or float ration of the density of a substance to the density of water
6.1.5 Continuity Equation VLAL=VrAr Flow rate=Q=vA m^3/s unit Bernoulli's Equation gravitational potential energy P1+1/2pv1^2+pgh1=P2+1/2pv2^2+phg2
6.2 Chapter 12
6.2.1 Waves crest maximum positive y displacement trough maximum negative y displacement f=1/T wavelength y=Asin(spift-(2pix/wavelength)) A is amplitude speed of wave v=deltax/deltaT=wavelength/T=f*wavelength
6.3 Chapter 11
6.3.1 Hookes Law Fspring=-kx k=spring constant x=amount of spring stretch equilibrium is x=0 F/a=Y(deltaL/L0) stress=f/a strain=deltaL/L0
6.3.2 Spring mass oscillator Simple pendulum mgsin(theta) f=1/2pi*sqrtg/l) 1/2mv^2max=KEmax=Pemax=1/2kA^2 Period T T=1/F Seconds (s) Frequency F Hertz Hz F=1/T
6.3.3 Harmonic Motion y=Asin(2pift) y component=Asintheta=AsinometaT x component=Acostheta=AcosomegaT theta=2pi=omegaT T=2pi/omega and f=omega/2pi omega(w) also called angular frequency
6.3.4 Youngs modulus Shear modulus F/A=S(deltaX/L0) Bulk Modulus deltaP=-B(deltaV/V0)

Media attachments