# General Physics Final

Mind Map by , created almost 6 years ago

## Mind Map on General Physics Final, created by jvogan on 12/09/2013.

60
1
0
No tags specified
 Created by jvogan almost 6 years ago
GCSE Maths: Geometry & Measures
Health and Social Care
Introduction to the Atom
CCNA Security 210-260 IINS - Exam 1
Jobs in child care
Photosynthesis and Respiration Quiz
Aggression mind-map for A2 AQA Psychology
SAT Math Sample Questions
CHEMISTRY C1 2
Break-even Analysis - FLASH CARDS
General Physics Final
1 Chapter 14
1.1 Thermodynamics
1.1.1 0th law
1.1.1.1 Ta=Tb=Tc
1.1.2 focuses on energy
1.1.2.1 conservation of energy
1.1.2.2 transfer of energy
1.2 Temperature & Heat
1.2.1 based on hotness or coldness
1.2.2 thermal equilibrium
1.2.2.1 Ta=Tb=Tc
1.2.2.2 heat flow
1.2.3 heat energy
1.2.3.1 flows between two systems
1.2.3.2 Joule
1.2.3.2.1 J
1.2.3.3 Calorie
1.2.3.3.1 1 cal=4.186J
1.2.3.3.2 =1000 calories
1.2.4 3 scales
1.2.4.1 fahrenheit
1.2.4.1.1 freeze at 32
1.2.4.1.2 boil at 212
1.2.4.1.3 Tf=9/5tc+32
1.2.4.2 Kelvin
1.2.4.2.1 freeze at 273.15
1.2.4.2.2 boil at 373.14
1.2.4.2.3 Tk=Tc+273.15
1.2.4.2.4 absolute 0 at 0
1.2.4.3 Celsius
1.2.4.3.1 freeze at 0
1.2.4.3.2 boil at 100
1.3 Phases of Matter
1.3.1 Solid
1.3.1.1 atoms held in place by forces from next atom
1.3.2 Liquid
1.3.2.1 atoms able to move about
1.3.3 Gas
1.3.3.1 density lower than liquid
1.3.4 Internal Energy U
1.3.4.1 phase change
1.3.4.1.1 phase diagram
1.3.4.1.2 melting
1.3.4.1.3 freezing
1.3.4.1.4 evaporation
1.3.4.1.5 sublimation
1.3.4.2 heat capacity = q/delta(t)
1.3.4.3 specific heat = c=Q/mdelta(T)
1.3.4.3.1 latent heat of fusion
1.3.4.3.2 latent heat of vaporization
2 Chapter 15
2.1 Gasses and Kinetic Theory
2.1.1 Gas Laws
2.1.1.1 Ideal Gas Law
2.1.1.1.1 dilute gass
2.1.1.1.2 Pv=nRT
2.1.1.1.2.1 R=8.31J/mole*K
2.1.1.1.2.2 n=number of moles present
2.1.1.1.3 Kb=Boltzmanns Constant
2.1.1.1.3.1 1.38e-23J/K
2.1.1.2.1 V proportional to N
2.1.1.3 Boyles Law
2.1.1.3.1 P proportional to 1/v
2.1.1.3.1.1 for constant temp
2.1.1.4 Charles law
2.1.1.4.1 V proportional to T
2.1.1.4.1.1 for constant pressure
2.1.1.5 Gay-Lussacs Law
2.1.1.5.1 P proportional to T
2.1.1.5.1.1 for constant volume
2.1.2 Kinetic Theory
2.1.2.1 3/2KbT
2.1.2.2 Molecular Speeds
2.1.2.3 v=sqrt((3KbT/M))
2.2.1 Na=6.023e23
2.2.1.1 Pure number
2.2.2 Number of particles in a mole
2.3 atomic mass
2.3.1 M=M/Na
3 Chapter 16
3.1 Thermodynamics
3.1.1 Quantities Used to describe systems
3.1.1.1 Pressure
3.1.1.2 Volume
3.1.1.3 Temperature
3.2 Four Laws
3.2.1 Zeroth Law
3.2.1.1 Based on idea of thermal equilibrium
3.2.1.1.1 If ta=tb and tb=tc then ta=tc
3.2.2 First Law
3.2.2.1 U=3/2KbT or 3/2nRT
3.2.2.2 Thermal Reservoir
3.2.2.3 Work
3.2.2.4 Thermodynamic Processes
3.2.2.4.1 Isobaric
3.2.2.4.1.1 Constant Pressure
3.2.2.4.1.2 W=PdeltaV=P(V1-V2)
3.2.2.4.2 IsoThermal
3.2.2.4.2.1 Constant Temperature
3.2.2.4.2.2 W=nRTln(Vf/Vi)
3.2.2.4.2.3 Expansion
3.2.2.4.2.4 Compression
3.2.2.4.3.1 Heat Q=0
3.2.2.4.3.2 P proportional to 1/Vf
3.2.2.4.4 Isochoric
3.2.2.4.4.1 Constant volume
3.2.2.4.4.2 W=PdeltaV=0
3.2.3 2nd law
3.2.3.1 Heat cannot flow from cold to hot
3.2.3.1.1 Heat Engine
3.2.3.1.1.1 Qh=W
3.2.3.1.1.2 Carnot Engine
3.2.3.1.1.2.1 Reversible Heat Engine
3.2.3.1.1.2.2 Qc must be low
3.2.3.1.1.2.3 Qc/Qh=Tc/Tn
3.2.3.1.1.2.4 e=1-Tc/th
4 Exam 1
4.1 Chapter 2
4.1.1 Inertia
4.1.2 Newtons Laws of Motion
4.1.3 Motion
4.1.4 Velocity
4.2 Chapter 3
4.2.1 Normal Forces
4.2.2 Friction
4.2.3 Velocity Vs Time
4.3 Chapter 4
4.3.1 Projectile Motion
4.3.2 Friction
4.3.2.1 Kinetic
4.3.2.2 Static
4.3.3 Newtons Laws
4.3.3.1 First Law
4.3.3.2 2nd law
4.3.3.2.1 F=ma
4.3.3.3 3rd law
5 Exam 2
5.1 Chapter 8
5.1.1 Torque
5.1.2 Equilibrium
5.1.3 Rotational Inertia
5.2 Chapter 6
5.2.1 Energy
5.2.2 Conservation of Energy
5.2.3 Work
5.2.3.1 Joule Unit
5.2.3.2 Can be + or -
5.2.3.3 1d motion
5.2.3.3.1 w=fdeltax
5.2.3.4 scalar
5.3 Chapter 5
5.3.1 Gravitation
5.3.2 Circular Motion
5.3.2.1 Period of Motion
5.3.2.1.1 t=2pi(r)/V
5.3.2.2 acceleration not constant
5.3.2.3 centripital acceleration
5.3.2.3.1 center seeking
5.3.2.3.2 magnitude
5.3.2.3.2.1 ac=v^2/r
5.4 Chapter 7
5.4.1 Center of Mass
5.4.2 Impulse
5.4.3 collisions
5.4.4 momentum
5.4.4.1 p=mv
5.4.4.2 kgm/s
6 Exam 3
6.1 Chapter 10
6.1.1 Buoyancy
6.1.1.1 Archimedes Principle
6.1.1.1.1 applies to objects immersed in fluids
6.1.1.1.1.1 floating
6.1.1.1.1.2 fully immersed
6.1.1.1.2 apparent weight
6.1.1.1.3 buoyant force
6.1.1.1.3.1 Fb=p(rho)*g*V
6.1.2 Pressure and Density
6.1.2.1 Patm=1.01x10^5 Pa
6.1.2.2 Pascal Unit
6.1.2.2.1 1pa=1N/m^2
6.1.2.3 density
6.1.2.3.1 p(rho)=m/v
6.1.2.3.2 kg/m^3 unit
6.1.2.4 force perpendicular to area
6.1.2.5 a=area
6.1.2.6 p=f/a
6.1.2.6.1 f=pa
6.1.2.6.2 f=magnitude
6.1.3 Pascals Principle
6.1.3.1 hydraulic lift
6.1.3.2 Fl=Fr*(Al/Ar)
6.1.4 Effects of Gravity
6.1.4.1 specific gravity
6.1.4.1.1 determines if object will sink or float
6.1.4.1.2 ration of the density of a substance to the density of water
6.1.5 Continuity Equation
6.1.5.1 VLAL=VrAr
6.1.5.2 Flow rate=Q=vA
6.1.5.2.1 m^3/s unit
6.1.5.3 Bernoulli's Equation
6.1.5.3.1 gravitational potential energy
6.1.5.3.2 P1+1/2pv1^2+pgh1=P2+1/2pv2^2+phg2
6.2 Chapter 12
6.2.1 Waves
6.2.1.1 crest
6.2.1.1.1 maximum positive y displacement
6.2.1.2 trough
6.2.1.2.1 maximum negative y displacement
6.2.1.3 f=1/T
6.2.1.4 wavelength
6.2.1.5 y=Asin(spift-(2pix/wavelength))
6.2.1.5.1 A is amplitude
6.2.1.6 speed of wave
6.2.1.6.1 v=deltax/deltaT=wavelength/T=f*wavelength
6.3 Chapter 11
6.3.1 Hookes Law
6.3.1.1 Fspring=-kx
6.3.1.1.1 k=spring constant
6.3.1.1.2 x=amount of spring stretch
6.3.1.1.2.1 equilibrium is x=0
6.3.1.2 F/a=Y(deltaL/L0)
6.3.1.3 stress=f/a
6.3.1.4 strain=deltaL/L0
6.3.2 Spring mass oscillator
6.3.2.1 Simple pendulum
6.3.2.1.1 mgsin(theta)
6.3.2.1.2 f=1/2pi*sqrtg/l)
6.3.2.1.3 1/2mv^2max=KEmax=Pemax=1/2kA^2
6.3.2.2 Period T
6.3.2.2.1 T=1/F
6.3.2.3 Seconds (s)
6.3.2.4 Frequency F
6.3.2.4.1 Hertz Hz
6.3.2.4.2 F=1/T
6.3.3 Harmonic Motion
6.3.3.1 y=Asin(2pift)
6.3.3.2 y component=Asintheta=AsinometaT
6.3.3.3 x component=Acostheta=AcosomegaT
6.3.3.4 theta=2pi=omegaT
6.3.3.5 T=2pi/omega and f=omega/2pi
6.3.3.5.1 omega(w) also called angular frequency
6.3.4 Youngs modulus
6.3.4.1 Shear modulus
6.3.4.1.1 F/A=S(deltaX/L0)
6.3.4.2 Bulk Modulus
6.3.4.2.1 deltaP=-B(deltaV/V0)