My systems of equations' mindmap

DaniWEp
Mind Map by DaniWEp, updated more than 1 year ago
DaniWEp
Created by DaniWEp about 4 years ago
21
0

Description

My mindmap of systems of equations
Tags

Resource summary

My systems of equations' mindmap
1 Substitution method
1.1 1) First of all, you have to isolate an unknown like this:
1.1.1 y=24-4x
1.1.2 2) Then, you substitute the isolated unknown in the other equation:
1.1.2.1 2x-3(24-4x)=-2
1.1.2.2 3) Just solve the equation:
1.1.2.2.1 2x+12x=-2+72
1.1.2.2.1.1 14x=70
1.1.2.2.1.1.1 [x=5]
1.1.2.2.1.1.1.1 [y=24-20=4]
1.1.2.2.1.1.1.1.1 (5,4)
1.2 Example: 2x-3y=-2
1.2.1 4x+y=24
2 Addition/Substraction method
2.1 1) In this case, you've to start multiplying one equation in order to equal an unknown in both systems:
2.1.1 (2x-y=9)4
2.1.1.1 8x-4y=36

Annotations:

  • 4y
2.1.1.1.1 3x+4y=-14

Annotations:

  • 4y
2.1.2 2) Then, you have to remove the equal unknown in one equation like this:
2.1.2.1 3x+4y=-14
2.1.2.1.1 +
2.1.2.1.1.1 8x-4y=36
2.1.2.1.1.1.1 -----------------
2.1.2.1.1.1.1.1 11x=22
2.1.2.1.1.1.1.1.1 [x=2]
2.1.2.1.1.1.1.2 11x=22
2.1.2.2 3) You have just done it
2.1.2.2.1 [x=2]
2.1.2.2.1.1 4-9=y
2.1.2.2.1.1.1 -5=y
2.1.2.2.2 (2, -5)
2.2 Example: 2x–y=9
2.2.1 3x+4y=–14
3 Equalization Method
3.1 1) The first step is to isolate an unknown in both equations:
3.1.1 x=(-7-3y)/2
3.1.1.1 x=(-4+2y)/3
3.1.2 2) Next, you substitute one "x" by the other equation:
3.1.2.1 (-7-3y)/2=(-4+2y)/3
3.1.2.2 3) Solve it now!
3.1.2.2.1 3(-7-3y)=2(-4+2y)
3.1.2.2.1.1 -21+8=-y
3.1.2.2.1.1.1 [13=y]
3.1.2.2.1.1.1.1 [x=-8+26=18]
3.2 Example: 2x+3y=−7
3.2.1 3x−2y=−4
4 Graphical method
4.1 Example: 2x–3y=–2
4.1.1 4x+y =24
4.2 1) This is the most different method; you would find the solution trying with different combinations:
4.2.1 x
4.2.1.1 -2
4.2.1.1.1 -1
4.2.1.1.1.1 0
4.2.1.1.1.1.1 1
4.2.1.1.1.1.1.1 2
4.2.1.1.1.1.2 y=24
4.2.1.1.1.1.2.1 y=20
4.2.1.1.1.1.2.1.1 y=16
4.2.2 y=24-4x
4.2.2.1 y=32
4.2.2.1.1 y=28
4.2.3 2) You have to do it with both equations:
4.2.3.1 x
4.2.3.1.1 -2
4.2.3.1.1.1 -1
4.2.3.1.1.1.1 0
4.2.3.1.1.1.1.1 1
4.2.3.1.1.1.1.1.1 2
4.2.3.1.1.1.1.1.1.1 y=2
4.2.3.1.1.1.2 y=0
4.2.3.1.1.1.2.1 y=0.6^
4.2.3.1.1.1.2.1.1 y=1.3^
4.2.3.1.1.2 y=0.6^
4.2.3.2 y=(2+2x)/3
Show full summary Hide full summary

Similar

Statistics Equations
maya velasquez
“In knowledge there is always a trade-off between accuracy and simplicity.” Evaluate this statement
sanchopu
Sistema Nervioso
Escolapios Albacete
FARMACOLOGÍA DE LOS ANESTÉSICOS LOCALES
María Rivas
PROPERTIES OF MATTER
Escolapios Albacete
REALISMO JURÍDICO CLÁSICO
Julián Murcia
Adverbs: Modifi verbs, adjetives or another advebs
Sthyff Sammet Santa
contextualización de la educación inclusiva y con calidad
carolina Galindo
Verb To Be
Julie Basto
Mathematics Basic Operations
Ruth Díaz