{"ad_unit_id":"App_Resource_Sidebar_Upper","resource":{"id":6672506,"author_id":3086667,"title":"ratio","created_at":"2016-10-14T17:12:47Z","updated_at":"2016-10-18T00:32:42Z","sample":false,"description":"a set of notes on ratio","alerts_enabled":true,"cached_tag_list":"maths, gcse, ratio","deleted_at":null,"hidden":false,"average_rating":null,"demote":false,"private":false,"copyable":true,"score":36,"artificial_base_score":0,"recalculate_score":true,"profane":false,"hide_summary":false,"tag_list":["maths","gcse","ratio"],"admin_tag_list":[],"study_aid_type":"Note","show_path":"/notes/6672506","folder_id":5781157,"public_author":{"id":3086667,"profile":{"name":"megjohnson","about":null,"avatar_service":"gravatar","locale":"en-US","google_author_link":null,"user_type_id":140,"escaped_name":"megan johnson","full_name":"megan johnson","badge_classes":""}}},"width":300,"height":250,"rtype":"Note","rmode":"canonical","sizes":"[[[0, 0], [[300, 250]]]]","custom":[{"key":"rsubject","value":"GCSE "},{"key":"rtopic","value":"Maths"},{"key":"rlevel","value":"GCSE"},{"key":"env","value":"production"},{"key":"rtype","value":"Note"},{"key":"rmode","value":"canonical"},{"key":"uauth","value":"f"},{"key":"uadmin","value":"f"},{"key":"ulang","value":"en_us"},{"key":"ucurrency","value":"usd"}]}

{"ad_unit_id":"App_Resource_Sidebar_Lower","resource":{"id":6672506,"author_id":3086667,"title":"ratio","created_at":"2016-10-14T17:12:47Z","updated_at":"2016-10-18T00:32:42Z","sample":false,"description":"a set of notes on ratio","alerts_enabled":true,"cached_tag_list":"maths, gcse, ratio","deleted_at":null,"hidden":false,"average_rating":null,"demote":false,"private":false,"copyable":true,"score":36,"artificial_base_score":0,"recalculate_score":true,"profane":false,"hide_summary":false,"tag_list":["maths","gcse","ratio"],"admin_tag_list":[],"study_aid_type":"Note","show_path":"/notes/6672506","folder_id":5781157,"public_author":{"id":3086667,"profile":{"name":"megjohnson","about":null,"avatar_service":"gravatar","locale":"en-US","google_author_link":null,"user_type_id":140,"escaped_name":"megan johnson","full_name":"megan johnson","badge_classes":""}}},"width":300,"height":250,"rtype":"Note","rmode":"canonical","sizes":"[[[0, 0], [[300, 250]]]]","custom":[{"key":"rsubject","value":"GCSE "},{"key":"rtopic","value":"Maths"},{"key":"rlevel","value":"GCSE"},{"key":"env","value":"production"},{"key":"rtype","value":"Note"},{"key":"rmode","value":"canonical"},{"key":"uauth","value":"f"},{"key":"uadmin","value":"f"},{"key":"ulang","value":"en_us"},{"key":"ucurrency","value":"usd"}]}

6672506

{"ad_unit_id":"App_Resource_Leaderboard","width":728,"height":90,"rtype":"Note","rmode":"canonical","placement":1,"sizes":"[[[1200, 0], [[728, 90]]], [[0, 0], [[468, 60], [234, 60], [336, 280], [300, 250]]]]","custom":[{"key":"env","value":"production"},{"key":"rtype","value":"Note"},{"key":"rmode","value":"canonical"},{"key":"placement","value":1},{"key":"uauth","value":"f"},{"key":"uadmin","value":"f"},{"key":"ulang","value":"en_us"},{"key":"ucurrency","value":"usd"}]}

Writing ratiosRatios are similar to fractions; they can both be simplified by finding common factors. Always try to divide by the highest common factor. To make pastry you may need to mix 2 parts flour to 1 part fat. This means the ratio of flour to fat is 2:1. It is sometimes useful to write a ratio in the form 1:n or n:1 (where n is any number, possibly a fraction or decimal). This means we will not necessarily be dealing with whole numbers. If we are asked to write the ratio 2:5 in the form 1:n, we need to make the left-hand side of the ratio equal to 1. We do this by dividing both sides of the ratio by 2. 2:5 = 2/2 : 5/2 = 1 : 2.5

Dividing in ratiosRatios are also used when dividing up amounts. Share £200 in the ratio 2:3 This means share the money into 5 equal parts and give one person 2 shares, and the other 3 So 200/5 = 40, one person gets 2 x £40 = £80 and the other 3 x £40 = £120 Check that this adds up to the total, in this case £200 Sometimes you are given one half of the ratio and you have to work out the total. 2100 is the '3' in 3:5 2100 divided by 3 = 700 700 x (3+5 = 8) = 5600

{"ad_unit_id":"App_Resource_Leaderboard","width":728,"height":90,"rtype":"Note","rmode":"canonical","placement":2,"sizes":"[[[0, 0], [[970, 250], [970, 90], [728, 90]]]]","custom":[{"key":"env","value":"production"},{"key":"rtype","value":"Note"},{"key":"rmode","value":"canonical"},{"key":"placement","value":2},{"key":"uauth","value":"f"},{"key":"uadmin","value":"f"},{"key":"ulang","value":"en_us"},{"key":"ucurrency","value":"usd"}]}