REPRO/NEPHRO BLOCK: Week 3 - Kidneys

Description

Undergraduate MBChB Year 2 Quiz on REPRO/NEPHRO BLOCK: Week 3 - Kidneys, created by Melissa Denker on 05/12/2015.
Melissa Denker
Quiz by Melissa Denker, updated more than 1 year ago
Melissa Denker
Created by Melissa Denker over 8 years ago
5
0

Resource summary

Question 1

Question
What proportion of body weight is extracellular or intracellular fluid?
Answer
  • Extracellular: 20% Intracellular: 40%
  • Extracellular: 40% Intracellular: 20%
  • Extracellular: 30% Intracellular: 30%
  • Extracellular: 10% Intracellular: 50%
  • Extracellular: 50% Intracellular: 10%

Question 2

Question
Which factors affect fluid movement between compartments across endothelium barriers? These are found between intravascular and extravascular components (i.e. extracellular fluid).
Answer
  • Osmotic forces
  • Hydrostatic forces
  • Electrolyte concentrations
  • Availability of transport channels

Question 3

Question
What factors affect fluid movement between compartments across cell membranes? These are found between extracellular and intracellular compartments.
Answer
  • Hydrostatic pressure
  • Osmotic pressure
  • Availability of transport proteins
  • Electrolyte concentrations

Question 4

Question
What happens to the body fluid compartments when only water is given to the patient?
Answer
  • Number of sodium particles: no change in all compartments Volume: increases slightly in all compartments Concentration: decreases slightly in all compartments
  • Number of sodium particles: increase in the intravascular and interstitial compartment, but NOT the intracellular compartment Volume: increases in the intravascular and interstitial compartments; decreases in the intracellular compartment Concentration: increases in the intracellular compartment; no change in the intravascular and interstitial compartment
  • Number of sodium particles: increases in the intravascular and interstitial compartment; no change in the intracellular compartment Volume: increases in intravascular/interstitial compartment; no change in the intracellular compartment Concentration: decreases slightly in all compartments
  • Number of sodium particles: increases in the intracellular compartment; no change in the intravascular and interstitial compartments Volume: increases in the intracellular compartment; no change in the intravascular and interstitial compartments Concentration: decreases slightly in all compartments
  • Number of sodium particles: increases in the intracellular compartment; no change in the intravascular and interstitial compartments Volume: increases in the intracellular compartment; no change in the intravascular and interstitial compartments Concentration: increases in the intracellular compartment; no change in the intravascular and interstitial compartments

Question 5

Question
What happens to the body fluid compartments when the patient is given only sodium?
Answer
  • Number of sodium particles: no change in all compartments Volume: increases slightly in all compartments Concentration: decreases slightly in all compartments
  • Number of sodium particles: increase in the intravascular and interstitial compartment, but NOT the intracellular compartment Volume: increases in the intravascular and interstitial compartments; decreases in the intracellular compartment
  • Number of sodium particles: increases in the intravascular and interstitial compartment; no change in the intracellular compartment Volume: increases in intravascular/interstitial compartment; no change in the intracellular compartment
  • Number of sodium particles: increases in the intracellular compartment; no change in the intravascular and interstitial compartments Volume: increases in the intracellular compartment; no change in the intravascular and interstitial compartments Concentration: decreases slightly in all compartments

Question 6

Question
What happens to the body fluid compartments when the patient is given sodium AND water, i.e. isotonic saline infusion?
Answer
  • Number of sodium particles: no change in all compartments Volume: increases slightly in all compartments Concentration: decreases slightly in all compartments
  • Number of sodium particles: increase in the intravascular and interstitial compartment, but NOT the intracellular compartment Volume: increases in the intravascular and interstitial compartments; decreases in the intracellular compartment
  • Number of sodium particles: increases in the intravascular and interstitial compartment; no change in the intracellular compartment Volume: increases in intravascular/interstitial compartment; no change in the intracellular compartment Concentration: no change in all compartments

Question 7

Question
What are the 3 features of the glomerular filtration barrier?
Answer
  • Specialised capillary endothelium
  • Collagen based glomerular basement membrane
  • Podocytes
  • Membrane channels for specific substances
  • Active transporters for specific substances

Question 8

Question
What is the normal GFR?
Answer
  • 100 ml/min
  • 60 ml/min
  • 90 ml/min
  • 30 ml/min
  • 120 ml/min

Question 9

Question
Which part of the nephron contains tight junctions between cells?
Answer
  • PCT
  • Thin descending loop of Henle
  • Thick ascending loop of Henle
  • DCT
  • Glomerulus

Question 10

Question
How much of the Na/Cl is absorbed in the PCT?
Answer
  • 50%
  • 60%
  • 70%
  • 80%

Question 11

Question
What is the most accurate description of the process of tubular secretion?
Answer
  • Secretion of substances made in the tubular cells to aid reabsorption purposes (similar to Gi system)
  • Secretion of substances from the blood capillaries through tubular cells to the filtrate for excretion
  • Secretion of substances made in the tubular cells for excretion of waste

Question 12

Question
Describe ADH action. 1. ADH binds to [blank_start]V2 receptors[blank_end] ([blank_start]G protein coupled[blank_end] receptors) on the basolateral side of collecting duct cells 2. This causes a [blank_start]conformational change[blank_end] in the receptor, leading to the alpha subunit activating adenine cyclase 3. This stimulates [blank_start]cAMP[blank_end] production 4. This stimulates [blank_start]PKA[blank_end] production 5. This causes [blank_start]increased[blank_end] expression of [blank_start]aquaporins[blank_end] in the cell membrane, allowing more [blank_start]water reabsorption[blank_end]
Answer
  • V2 receptors
  • G protein coupled
  • conformational change
  • cAMP
  • PKA
  • increased
  • aquaporins
  • water reabsorption

Question 13

Question
What are the 3 effects of ADH?
Answer
  • Stimulates thirst
  • Vasodilation
  • Increased expression of aquaporins
  • Decreased expression of aquaporins
  • Vasoconstriction
  • Inhibits thirst

Question 14

Question
What membrane transporters are found in the collecting duct? 1. [blank_start]ENaC[blank_end] (function: [blank_start]reabsorption[blank_end] of Na+) 2. [blank_start]K+ channel[blank_end] (function: [blank_start]excretion[blank_end] of K+) 3. [blank_start]H+ channel[blank_end] (function: [blank_start]excretion[blank_end] of H+)
Answer
  • ENaC
  • K+ channel
  • H+ channel
  • reabsorption
  • excretion
  • excretion

Question 15

Question
What is the function of the macula densa?
Answer
  • Senses tubular flow
  • Secretes adenosine
  • Secretes renin

Question 16

Question
Change in kidney function in reduced tubular flow due to decreased blood flow: 1. Sensed by the [blank_start]macula densa[blank_end] 2. [blank_start]Granular (mesangial) cells[blank_end] produce [blank_start]renin[blank_end] 3. Renin stimulates the renin-angiotensin system: results in the production [blank_start]angiotensin II[blank_end] 4. [blank_start]Angiotensin II[blank_end] causes [blank_start]vasoconstriction[blank_end] of the efferent arteriole ---This [blank_start]increases[blank_end] pressure in the glomerulus ---This [blank_start]increases[blank_end] hyperfiltration and thus tubular flow 5. [blank_start]Angiotensin II[blank_end] also stimulates [blank_start]aldosterone[blank_end] secretion ---This increases sodium retention via [blank_start]ENaC[blank_end]
Answer
  • macula densa
  • Granular (mesangial) cells
  • renin
  • angiotensin II
  • Angiotensin II
  • vasoconstriction
  • increases
  • increases
  • Angiotensin II
  • aldosterone
  • ENaC

Question 17

Question
Change in kidney function in increased tubular flow due to increased blood flow: 1. Sensed by the [blank_start]macula densa[blank_end] 2. Macula densa produces [blank_start]adenosine[blank_end] 3. [blank_start]Adenosine[blank_end] causes [blank_start]afferent arteriolar constriction[blank_end] 4. This [blank_start]decreases[blank_end] blood flow to the kidney
Answer
  • macula densa
  • adenosine
  • Adenosine
  • afferent arteriolar constriction
  • decreases

Question 18

Question
Describe renal excretion of drugs via glomerular filtration protein binding. 1. Some drugs can enter the tubules via [blank_start]glomerular filtration[blank_end], e.g. if they are: ---[blank_start]Small molecules[blank_end] ---[blank_start]Not bound[blank_end] to plasma proteins 2. These drugs can then be [blank_start]excreted[blank_end] in the urine ---NOTE: this cannot happen to large drugs (e.g. [blank_start]heparin[blank_end]) or those bound to plasma proteins
Answer
  • glomerular filtration
  • Small molecules
  • Not bound
  • excreted
  • heparin

Question 19

Question
Describe renal excretion of drugs via tubular secretion independent of protein binding. 1. [blank_start]Active transport[blank_end] of drugs into the tubule from the [blank_start]capillary[blank_end] 2. There are 2 routes of tubular secretion: ---[blank_start]Basic carriers[blank_end] ------Carry [blank_start]basic drugs[blank_end] (i.e. alkaline), e.g. --------->[blank_start]Amiloride[blank_end] --------->[blank_start]Dopamine[blank_end] --------->[blank_start]Histamine[blank_end] ---[blank_start]Acidic carriers[blank_end] ------Carry [blank_start]acidic drugs[blank_end], e.g. --------->[blank_start]Frusemide[blank_end] (loop diuretic) --------->[blank_start]Penicillin[blank_end] --------->[blank_start]Indomethacin[blank_end] (NSAID) 3. Drugs are excreted in the urine very rapidly after secretion into the tubules 4. To prolong therapeutic effect: ---Agents can be prescribed to [blank_start]block[blank_end] tubular reabsorption
Answer
  • Active transport
  • capillary
  • Basic carriers
  • basic drugs
  • Amiloride
  • Dopamine
  • Histamine
  • Acidic carriers
  • acidic drugs
  • Frusemide
  • Penicillin
  • Indomethacin
  • block

Question 20

Question
Describe reabsorption dependent manipulability of drugs in the kidney. 1. After entering the tubules (either through [blank_start]reabsorption[blank_end] or [blank_start]secretion[blank_end]), drugs are either: ---[blank_start]Excreted[blank_end] in the urine ---[blank_start]Reabsorbed[blank_end] into the blood 2. Drugs are [blank_start]passively reabsorbed[blank_end] into the bloodstream together with [blank_start]water[blank_end]
Answer
  • reabsorption
  • secretion
  • Excreted
  • Reabsorbed
  • passively reabsorbed
  • water

Question 21

Question
Which of these drugs are excreted by the kidneys without first being metabolised, i.e. are largely unchanged?
Answer
  • Aminoglycosides
  • Atenolol
  • Bendroflumethiazide
  • Frusemide
  • Penicillin
  • Heparin
  • Thyroxine
  • Indomethacin
  • Aspirin
  • Analgesics

Question 22

Question
How can you measure creatinine clearance, used as a measure of kidney function? 1. [blank_start]Formal clearance[blank_end] (via 24 hour urine collection) 2. [blank_start]Isotope renogram[blank_end] 3. [blank_start]isohexol clearance[blank_end] 4. [blank_start]Inulin clearance[blank_end] 5. [blank_start]Formulae[blank_end] (which take into account factors which change creatinine clearance, e.g. age, sex)
Answer
  • Formal clearance
  • Isotope renogram
  • isohexol clearance
  • Inulin clearance
  • Formulae

Question 23

Question
How do the kidneys excrete drugs? 1. [blank_start]Glomerular filtration protein binding[blank_end] 2. [blank_start]Tubular secretion[blank_end] independent of protein binding 3. [blank_start]Reabsorption dependent manipulability[blank_end]
Answer
  • Glomerular filtration protein binding
  • Tubular secretion
  • Reabsorption dependent manipulability

Question 24

Question
What are the effects of impaired kidney function on drug metabolism/clearance? 1. Altered pharmacokinetics: ---[blank_start]Decreased drug elimination[blank_end] ---[blank_start]Decreased drug absorption[blank_end] ---[blank_start]Altered drug metabolism[blank_end] ---[blank_start]Altered drug distribution[blank_end] 2. Altered drug effects ---[blank_start]Increased sensitivity to drugs[blank_end] ---[blank_start]Decreased sensitivity to drugs[blank_end] 3. Worsening of existing renal impairment ---[blank_start]Impairment of renal function[blank_end] ---[blank_start]Increased fluid retention[blank_end] ---[blank_start]Uraemia and renal failure[blank_end] 4. [blank_start]Enhancement of adverse effects[blank_end] 5. [blank_start]Decreased clearance[blank_end]
Answer
  • Decreased drug elimination
  • Decreased drug absorption
  • Altered drug metabolism
  • Altered drug distribution
  • Increased sensitivity to drugs
  • Decreased sensitivity to drugs
  • Impairment of renal function
  • Increased fluid retention
  • Uraemia and renal failure
  • Enhancement of adverse effects
  • Decreased clearance

Question 25

Question
What are the 5 main effects of impaired renal function on drug metabolism? 1. [blank_start]Altered pharmacokinetics[blank_end] 2. [blank_start]Altered drug effects[blank_end] 3. [blank_start]Worsening of existing renal impairment[blank_end] 4. [blank_start]Enhancement of adverse effects[blank_end] 5. [blank_start]Decreased clearance[blank_end]
Answer
  • Altered pharmacokinetics
  • Altered drug effects
  • Worsening of existing renal impairment
  • Enhancement of adverse effects
  • Decreased clearance

Question 26

Question
Which factors affect the effects of renal impairment on drug metabolism? 1. [blank_start]Extent of renal decompensation[blank_end] 2. [blank_start]Extent of renal elimination of drugs[blank_end] 3. [blank_start]Therapeutic index of drugs[blank_end]
Answer
  • Extent of renal decompensation
  • Extent of renal elimination of drugs
  • Therapeutic index of drugs

Question 27

Question
What are the different types of nephrotoxicity? 1. [blank_start]Acute tubular necrosis[blank_end]/[blank_start]direct nephrotoxicity[blank_end] 2. [blank_start]Drug-related glomerulonephritis[blank_end] 3. [blank_start]Interstitial nephritis[blank_end] 4. [blank_start]Nephrogenic diabetes insipidus[blank_end]
Answer
  • Acute tubular necrosis
  • direct nephrotoxicity
  • Drug-related glomerulonephritis
  • Interstitial nephritis
  • Nephrogenic diabetes insipidus

Question 28

Question
How do ACE inhibitors cause nephrotoxicity? 1. Normally, if the sensed volume is reduced, [blank_start]angiotensin II[blank_end] causes [blank_start]vasoconstriction[blank_end] of the [blank_start]efferent arteriole[blank_end] to maintain glomerular filtration pressure and GFR 2. [blank_start]ACE inhibits[blank_end] prevent the action of [blank_start]angiotensin II[blank_end] 3. Therefore there is no vasoconstriction of the efferent arteriole 4. Therefore, glomerular filtration pressure and GFR [blank_start]decreases[blank_end] ---This causes kidney function impairment, i.e. nephrotoxicity
Answer
  • angiotensin II
  • vasoconstriction
  • efferent arteriole
  • ACE inhibitors
  • angiotensin II
  • decreases

Question 29

Question
How do NSAIDs cause nephrotoxicity? 1. Normally, in reduced sensed volume, [blank_start]prostaglandins[blank_end] cause [blank_start]vasodilation[blank_end] of [blank_start]afferent arterioles[blank_end] in the nephron (while angiotensin II causes vasoconstriction of efferent arterioles) to maintain GFR 2. NSAIDs [blank_start]inhibit[blank_end] the action of prostaglandins 3. Therefore, there is [blank_start]no vasodilation[blank_end] of afferent arterioles 4. Therefore, glomerular filtration pressure and GFR [blank_start]decreases[blank_end] ---This causes kidney function impairment, i.e. nephrotoxicity
Answer
  • prostaglandins
  • vasodilation
  • afferent arterioles
  • inhibit
  • no vasodilation
  • decreases

Question 30

Question
How does gentamicin cause nephrotoxicity? 1. [blank_start]High peaks[blank_end] are needed for antibacterial activity, but this creates [blank_start]prolonged trough levels[blank_end] 2. [blank_start]Prolonged trough levels[blank_end] cause [blank_start]toxic side effects[blank_end], which affect the [blank_start]PCT[blank_end] 3. Development of kidney failure depends on: ---[blank_start]Underlying kidney disease[blank_end] ---[blank_start]Hydration[blank_end] ---[blank_start]Age[blank_end] ---[blank_start]Cumulative dose[blank_end]
Answer
  • High peaks
  • prolonged trough levels
  • Prolonged trough levels
  • toxic side effects
  • PCT
  • Underlying kidney disease
  • Hydration
  • Age
  • Cumulative dose

Question 31

Question
In what condition would you always AVOID giving ACE inhibitors and NSAIDs?
Answer
  • Renal impairment with reduced blood flow to the kidneys
  • Renal impairment with severe haematuria
  • Renal impairment with severe proteinuria
  • Chronic renal failure

Question 32

Question
What are hydrostatic forces, and where are they greatest?
Answer
  • Pressure in blood vessels created by the heartbeat Function: allows transport of fluid OUT of capillaries Largest in: arteries
  • Gradient in blood vessels created by solute concentrations Function: allows transport of fluid OUT of capillaries Largest in: arteries
  • Pressure in blood vessels created by the heartbeat Function: allows transport of fluid INTO capillaries Largest in: arteries
  • Pressure in blood vessels created by the heartbeat Function: allows transport of fluid OUT of capillaries Largest in: veins
  • Gradient in blood vessels created by solute concentrations Function: allows transport of fluid INTO capillaries Largest in: veins

Question 33

Question
What are the 3 factors which affect the extracellular fluid volume/composition? 1. [blank_start]Salt intake[blank_end] 2. [blank_start]Water intake[blank_end] 3. [blank_start]Salt/water losses[blank_end]
Answer
  • Salt intake
  • Water intake
  • Salt/water losses

Question 34

Question
What are the features of the tubular epithelium in the proximal convoluted tubule? 1. [blank_start]Tight junctions[blank_end] 2. [blank_start]Aquaporin I[blank_end] 3. [blank_start]Na+ cotransporters[blank_end]
Answer
  • Tight junctions
  • Aquaporin I
  • Na+ cotransporters

Question 35

Question
What are the features of the tubular epithelium in the thin descending loop of Henle? 1. [blank_start]Loose junctions[blank_end] 2. [blank_start]Aquaporin I[blank_end]
Answer
  • Loose junctions
  • Aquaporin I

Question 36

Question
What are the features of the tubular epithelium in the thick ascending limb of the loop of Henle? 1. [blank_start]Impermeable to water[blank_end] 2. [blank_start]Na+/K+/2Cl- channel[blank_end] ([blank_start]NKCC channel[blank_end])
Answer
  • Impermeable to water
  • Na+/K+/2Cl- channel
  • NKCC channel

Question 37

Question
What are the features of the tubular epithelium in the collecting duct? 1. [blank_start]Aquaporin II, III, IV[blank_end] 2. [blank_start]ENaC[blank_end] ([blank_start]epithelial Na channel[blank_end])
Answer
  • Aquaporin II, III, IV
  • ENaC
  • epithelial Na channel

Question 38

Question
Which part of the nephron is completely impermeable to water?
Answer
  • PCT
  • Thin descending loop of Henle
  • Thick ascending loop of Henle
  • DCT
  • Collecting duct

Question 39

Question
What stimulates ADH secretion?
Answer
  • Increased serum osmolality
  • Decreased volume
  • Increased volume
  • Decreased filtrate osmolality
  • Increased filtrate osmolality
  • High H+ levels in the collecting duct

Question 40

Question
Which structure is responsible for sensing decreased volume, and consequently stimulating ADH production?
Answer
  • Juxtaglomerular cells
  • Macula densa
  • Osmoreceptors in the hypothalamus
  • Baroreceptors in the glomerulus
  • Intercalated cells in the collecting duct

Question 41

Question
Which structure is responsible for sensing increased serum osmolality, and consequently stimulating ADH production?
Answer
  • Osmoreceptors in the hypothalamus
  • Juxtaglomerular cells
  • Macula densa
  • Glomerulus
  • Intercalated cells in the collecting duct

Question 42

Question
Describe the counter-current exchange multiplier. 1. [blank_start]Na+[blank_end] and [blank_start]other electrolytes[blank_end] are transported out of the [blank_start]thick ascending loop of Henle[blank_end] (via [blank_start]Na+/K+/2Cl- channel[blank_end]) a. The [blank_start]ascending loop[blank_end] is impermeable to water, so this stays in the lumen b. This creates a [blank_start]very high[blank_end] concentration of electrolytes in the [blank_start]interstitium[blank_end] and [blank_start]capillaries[blank_end] 2. The [blank_start]vasa recta[blank_end] around the loop of Henle flow in the [blank_start]opposite[blank_end] direction to the nephron, so the high concentration of electrolytes is moved to surround the [blank_start]thin descending loop of Henle[blank_end] 3. The [blank_start]large concentration gradient[blank_end] creates a [blank_start]large osmotic gradient[blank_end] around the [blank_start]thin descending loop of Henle[blank_end] a. This allows for the reabsorption of large amounts of [blank_start]water[blank_end] from the descending loop 4. This also creates a [blank_start]very concentrated[blank_end] filtrate in the descending loop, which then moves on to the ascending loop – this increases reabsorption of electrolytes along the concentration gradient in the ascending loop
Answer
  • Na+
  • other electrolytes
  • thick ascending loop of Henle
  • Na+/K+/2Cl- channel
  • ascending loop
  • very high
  • interstitium
  • capillaries
  • vasa recta
  • opposite
  • thin descending loop of Henle
  • large concentration gradient
  • large osmotic gradient
  • thin descending loop of Henle
  • water
  • very concentrated

Question 43

Question
Describe the renin-angiotensin-aldosterone system (RAAS). 1. [blank_start]Renin[blank_end] is secreted by the [blank_start]juxtaglomerular cells[blank_end] in the kidney, stimulated by: a. Increased [blank_start]sympathetic innervation[blank_end] b. Decreased [blank_start]afferent arteriole pressure[blank_end] c. [blank_start]Hyperkalaemia[blank_end] d. [blank_start]Decreased Na+/Cl-[blank_end] levels in the DCT (sensed by the [blank_start]macula densa[blank_end]) 2. [blank_start]Renin[blank_end] stimulates conversion of [blank_start]angiotensinogen[blank_end] into [blank_start]angiotensin I[blank_end] 3. [blank_start]Angiotensin I[blank_end] is converted to [blank_start]angiotensin II[blank_end] by [blank_start]angiotensin converting enzyme (ACE)[blank_end] 4. Effects of [blank_start]angiotensin II[blank_end]: a. [blank_start]Vasoconstriction[blank_end] (via AII/AT1 receptors) b. Stimulates [blank_start]sodium reabsorption[blank_end] in the nephron c. Stimulates [blank_start]aldosterone[blank_end] secretion from the adrenal cortex d. Stimulates [blank_start]ADH[blank_end] secretion from the posterior pituitary gland e. Stimulates [blank_start]thirst centres[blank_end] in the brain f. Enhances [blank_start]sympathetic[blank_end] adrenergic innervation g. Stimulates cardiac and vascular hypertrophy
Answer
  • Renin
  • juxtaglomerular cells
  • sympathetic innervation
  • afferent arteriole pressure
  • Hyperkalaemia
  • Decreased Na+/Cl-
  • macula densa
  • Renin
  • angiotensinogen
  • angiotensin I
  • Angiotensin I
  • angiotensin II
  • angiotensin converting enzyme (ACE)
  • angiotensin II
  • Vasoconstriction
  • sodium reabsorption
  • aldosterone
  • ADH
  • thirst centres
  • sympathetic

Question 44

Question
How does aldosterone increase sodium and fluid retention? 1. [blank_start]Increased expression of ENaC[blank_end] (via preformed vesicles) 2. [blank_start]Increased stability of ENaC[blank_end] 3. [blank_start]Increased activity of Na+/K+ ATPase[blank_end]
Answer
  • Increased expression of ENaC
  • Increased stability of ENaC
  • Increased activity of Na+/K+ ATPase

Question 45

Question
What is the juxtaglomerular apparatus made of? 1. [blank_start]Macula densa[blank_end] (in the DCT) 2. [blank_start]Juxtaglomerular cells[blank_end] (around the afferent arteriole) 3. [blank_start]Mesangial cells[blank_end] (in the glomerulus)
Answer
  • Macula densa
  • Juxtaglomerular cells
  • Mesangial cells
Show full summary Hide full summary

Similar

Renal System A&P
Kirsty Jayne Buckley
The Kidneys (Nephron)
mtgbowen
Acid-Base Balance
sophietevans
HMB Peer Teaching - Tubular reabsorption and secretion
Jack Cönnolly
Homeostasis and Excretion
Hania Azraa Sohawon
Kidneys
livvy.b.m.adams
Excretion flashacards
khtsmith09
acute kidney injury
v.djabatey
Enuresis
v.djabatey
Renal System (Part of)
Addeana
REPRO/NEPHRO BLOCK: Week 4 - More Kidneys
Melissa Denker