Biological molecules

Georgia Battersby-Hill
Quiz by Georgia Battersby-Hill, updated more than 1 year ago
180
15
0

Description

Chapter 1 of AQA AS Biology

Resource summary

Question 1

Question
What is covalent bonding?
Answer
  • 2 non-metals sharing an eloctron to complete their outer shells
  • A metal and a non-metal bonding through electrostatic attraction

Question 2

Question
In hydrogen bonding, the individual bonds are very strong.
Answer
  • True
  • False

Question 3

Question
The sub-unit of a polysaccharide is a [blank_start]monosaccharide[blank_end]. Two of these together form a disaccharide.
Answer
  • monosaccharide
  • mononucleotide
  • disaccharide
  • glucose

Question 4

Question
Formation of polypeptides and polysaccharides are ____________ reactions.
Answer
  • condensation
  • hydrolysis
  • magic

Question 5

Question
A molar solution is a solution that contains [blank_start]1 mol of solute in a litre of solution[blank_end]
Answer
  • 1 mol of solute in a litre of solution

Question 6

Question
[blank_start]Monomers[blank_end] join together to make [blank_start]polymers[blank_end].
Answer
  • Monomers
  • Polymers
  • Nucleotides
  • polymers
  • monomers
  • glucose

Question 7

Question
Monosaccharides are...
Answer
  • Sweet-tasting
  • Insoluble
  • Starchy
  • Soluble
  • Have the general formula (CH2O)n

Question 8

Question
The test for reducing sugars involves adding hydrochloric acid
Answer
  • True
  • False

Question 9

Question
A reducing sugar is a sugar that can reduce another substance by [blank_start]donating its electrons[blank_end]
Answer
  • donating its electrons

Question 10

Question
To test for reducing and non-reducing sugars we use...
Answer
  • Tollen's reagent
  • Benedict's reagent
  • Starch
  • Iodine

Question 11

Question
What are the results of the Benedict's test for reducing sugars?
Answer
  • Turns red for a high concentration
  • Stays blue for no reducing sugars
  • Turns green for a high concentration
  • Turns yellow/orange for a medium concentration
  • Turns purple for a low concentration

Question 12

Question
Glucose plus [blank_start]glucose[blank_end] forms maltose.
Answer
  • glucose
  • fructose
  • lactose

Question 13

Question
Glucose plus [blank_start]fructose[blank_end] forms sucrose.
Answer
  • fructose
  • glucose
  • galactose

Question 14

Question
Glucose plus [blank_start]galactose[blank_end] forms lactose.
Answer
  • fructose
  • galactose
  • sucrose

Question 15

Question
What is this molecule?
Answer
  • Beta glucose

Question 16

Question
What is this molecule?
Answer
  • Alpha glucose

Question 17

Question
How does the Benedict's test for non-reducing sugars differ to that of reducing sugars? (tick all appropriate)
Answer
  • The colour changes are different
  • You have to add hydrochloric acid after the first round of heating
  • You add nitrogen sulphide to neutralise the acid
  • You add sodium hydroxide to neutralise the acid
  • There is a temperature change after you add the iodine

Question 18

Question
Polysaccharides are insoluble
Answer
  • True
  • False

Question 19

Question
The test for starch uses [blank_start]iodine[blank_end]. If starch is present it will turn from [blank_start]orange[blank_end] to [blank_start]black[blank_end].
Answer
  • iodine
  • Tollen's reagent
  • orange
  • red
  • blue
  • silver
  • black
  • purple

Question 20

Question
Starch is made of alpha glucose.
Answer
  • True
  • False

Question 21

Question
Tick the correct answers.
Answer
  • Cellulose is found in plants
  • Cellulose is made of alpha glucose
  • Glycogen is found in bacteria
  • Glycogen is made of alpha glucose
  • Starch is linked by glycosidic bonds
  • Starch is a straight molecule
  • Glycogen is short coils with lots of branches
  • Cellulose is branched
  • Cellulose has hydrogen bonds that form cross-linkages

Question 22

Question
Lipids are insoluble in [blank_start]water[blank_end] but soluble in [blank_start]organic solvents[blank_end]
Answer
  • water
  • organic solvents

Question 23

Question
What are some roles of lipids?
Answer
  • Insulation
  • Water-absorbant
  • Protection
  • Source of energy
  • Source of nitrogen for plants

Question 24

Question
Phospholipids...
Answer
  • allow the transfer of lipid-insoluble substances across membranes
  • contribute to the flexibility of membranes

Question 25

Question
What is this molecule?
Answer
  • Triglyceride

Question 26

Question
The fatty acids in triglycerides are unsaturated.
Answer
  • True
  • False

Question 27

Question
Structure and functions of triglycerides: The high ratio of carbon-hydrogen bonds to carbon atoms means they are a good [blank_start]source of energy[blank_end]. The low mass to energy ratio means they are good [blank_start]storage molecules[blank_end]. The large and insoluble molecules are [blank_start]good storage molecules[blank_end] and don't affect the [blank_start]water potential[blank_end] of the cells. The high ration of hydrogen to oxygen atoms mean they are a good [blank_start]source of water[blank_end].
Answer
  • source of energy
  • storage molecules
  • good storage molecules
  • water potential
  • source of water

Question 28

Question
What is this molecule?
Answer
  • Phospholipid

Question 29

Question
Phospholipids have...
Answer
  • A hydrophilic head
  • A hydrophobic head
  • A hydrophilic tail
  • A hydrophobic tail

Question 30

Question
Structure and function of phospholipids: The hydrophilic heads and hydrophobic tails form a [blank_start]bilayer[blank_end] in [blank_start]aqueous[blank_end] environments. The [blank_start]hydrophilic[blank_end] heads help hold the surface of the cell-surface membrane. They can form [blank_start]glycolipids[blank_end] with carbohydrates which are important for cell recognition.
Answer
  • bilayer
  • aqueous
  • gaseous
  • hydrophilic
  • glycolipids
  • emulsions

Question 31

Question
Test for lipids: 1. Add 2cm^3 of your sample and 5cm^3 of [blank_start]ethanol[blank_end] to a test tube 2. Shake the tube to dissolve any [blank_start]lipids[blank_end] in the sample 3. Add 5cm^3 of [blank_start]water[blank_end] and shake gently 4. If lipids are present then the solution will turn [blank_start]cloudy-white[blank_end]
Answer
  • ethanol
  • iodine
  • lipids
  • glucose
  • water
  • Benedict's reagent
  • cloudy-white
  • yellow
  • blue
  • black

Question 32

Question
Amino acids are the basic [blank_start]monomer[blank_end] units for proteins and the polymer is called a [blank_start]polypeptide[blank_end].
Answer
  • monomer
  • polymer
  • sugar
  • polynucleotide
  • polypeptide
  • polysaccharide

Question 33

Question
Amino acids provide indirect evidence for...
Answer
  • Evolution (the same 40 are in everything)
  • Meiosis (each is split in two for gametes)
  • Evolution (the same 20 are in everything)
  • Mitosis (the same ones are in the daughter cells)

Question 34

Question
Label this amino acid structure
Answer
  • R group
  • Nitrogen
  • Amino group
  • Phosphate
  • Carboxyl group
  • Carbohydrate
  • Hydrochloric acid
  • Hydrogen
  • Central carbon atom
  • Central carbon ion

Question 35

Question
The process of joining many amino acid monomers together is called polymerisation.
Answer
  • True
  • False

Question 36

Question
The primary structure of a protein is formed by the specific sequence of [blank_start]amino acids[blank_end]. The primary structure determines its [blank_start]shape[blank_end] and therefore function so changing just a single amino acid in the chain could potentially change the way the whole protein works.
Answer
  • amino acids
  • shape

Question 37

Question
The [blank_start]secondary[blank_end] structure of a protein is the long polypeptide chain being twisted into a [blank_start]3D[blank_end] shape. This is caused by the [blank_start]hydrogen[blank_end] bonds that form between the H from the [blank_start]positive[blank_end] NH group of one and the O of another's [blank_start]negative[blank_end] C=O.
Answer
  • secondary
  • tertiary
  • 2D
  • 3D
  • hydrogen
  • disulfide
  • positive
  • negative
  • positive
  • negative

Question 38

Question
The tertiary structure of the protein is formed by the secondary structure being further coiled and twisted into a more [blank_start]complex[blank_end] and recognisable shape. This shape is maintained by three types of bonds: hydrogen bonds, [blank_start]ionic[blank_end] bonds and disulfide bridges. The [blank_start]hydrogen[blank_end] bonds are numerous but easily broken. The ionic bonds are stronger than the hydrogen bonds however they are easily broken by a change in [blank_start]pH[blank_end]. The disulfide bridges are the [blank_start]strongest[blank_end] out of the three.
Answer
  • complex
  • hydrogen
  • pH
  • temperature
  • pressure
  • strongest
  • weakest
  • ionic

Question 39

Question
The [blank_start]quaternary[blank_end] structure is the most complex and consists of many individual polypeptide chain linked in various ways. Some of these molecules have non-protein ([blank_start]prosthetic[blank_end]) groups associated with them e.g. the [blank_start]iron[blank_end] containing haem group in haemoglobin.
Answer
  • quaternary
  • tertiary
  • secondary
  • fake
  • prosthetic
  • pseudo
  • iron
  • nitrogen
  • calcium
  • magnesium

Question 40

Question
What is the test for proteins called?
Answer
  • Tollen's
  • Sterilisation
  • Biuret
  • Benedict's

Question 41

Question
What are the steps in the test for proteins?
Answer
  • 1. Place your sample and an equal volume of sodium hydroxide in a test tube
  • 1. Place your sample and an equal volume of sodium disulphate in a test tube
  • !. Place your sample and an equal volume of hydrochloric acid in a test tube
  • 2. Add a few drops of high concentration copper sulphate and mix gently
  • 2. Add a few drops of very dilute copper sulphate and mix gently
  • 3. If it goes red there are peptide bonds and therefore proteins present but stays blue in their absence
  • 3. If it goes purple there are peptide bonds and therefore proteins present but stays blue in their absence
  • 3. If it goes green there are peptide bonds and therefore proteins present but stays blue in their absence

Question 42

Question
Enzymes are globular proteins that act as [blank_start]catalysts[blank_end]. They do this by lowering the [blank_start]activation energy[blank_end] of a reaction by providing an alternative pathway for the reaction without being [blank_start]used up[blank_end] themselves.
Answer
  • catalysts
  • activation energy
  • used up

Question 43

Question
The functional region of an enzyme is called the...
Answer
  • substrate
  • active site
  • complex

Question 44

Question
The molecule upon which the enzyme acts is called the...
Answer
  • substrate
  • active site
  • protein

Question 45

Question
Scientists used to use the [blank_start]lock and key[blank_end] model to explain how enzymes work but this is now out-dated. Instead, we use the [blank_start]induced-fit[blank_end] model. It suggests that the enzyme's active site changes shape when in close proximity to the [blank_start]substrate[blank_end] as a result of the [blank_start]charges[blank_end] in each molecule. The active site [blank_start]moulds[blank_end] itself around the substrate to form an [blank_start]enzyme-substrate complex[blank_end] which distorts bonds in the substrate to lower the [blank_start]activation[blank_end] energy.
Answer
  • lock and key
  • induced-fit
  • substrate
  • charges
  • moulds
  • enzyme-substrate complex
  • activation

Question 46

Question
For an enzyme to work, it must...
Answer
  • Come into contact with the substrate
  • Be diluted in solution
  • Have the correct orientation so the active site and substrate collide
  • Have a complementary active site to the substrate
  • Be at body temperature (37°C)

Question 47

Question
The two changes most frequently measured to measure the rate of enzyme-catalysed reactions are...
Answer
  • Dissapearance of substrate
  • Amount of gas released
  • Formation of products
  • Temperature fluctuation

Question 48

Question
Measuring rate of change on a graph involves drawing a tangent to the curve and then working out the change in x divided by the change in y.
Answer
  • True
  • False

Question 49

Question
Label this graph of the effects of temperature on enzyme activity
Answer
  • Optimum temperature
  • Temp too high, enzymes start to denature
  • As temp increases, kinetic energy does
  • Temp too low, not enough energy to work
  • No enzymes left, no activity

Question 50

Question
Label this graph of the effects of pH on enzyme activity
Answer
  • Optimum pH
  • Narrow range
  • pH too low
  • pH too high
  • H+ ion concentration denaturing enzymes

Question 51

Question
Label this graph of the effects of enzyme concentration on enzyme activity
Answer
  • Too few enzymes for amount of substrate
  • All substrate has an active site
  • Already enough active sites for sub.
  • Temperature too high
  • Not enough kinetic energy
  • Optimum pH

Question 52

Question
Label this graph of the effects of substrate concentration on enzyme activity
Answer
  • Not enough sub. to fill all active sites
  • Max rate, all sub in an active site
  • All active sites already occupied
  • Temperature too high
  • Optimum pH
  • Not enough kinetic energy

Question 53

Question
[blank_start]Competitive[blank_end] inhibitors interfere with the functioning of an enzyme by binding to the active site and getting in the way of the substrate. [blank_start]Non-competitive[blank_end] inhibitors interfere with the functioning of an enzyme by binding to it in a place other than the active site, changing its shape so the active site is no longer [blank_start]complementary[blank_end] to the substrate.
Answer
  • Competitive
  • Non-competitive
  • complementary

Question 54

Answer
  • Competitive
  • Non-competitive

Question 55

Answer
  • Competitive
  • Non-competitive
Show full summary Hide full summary

Suggestions

AS biology- 1A, Biological Molecules
charlotte.newis3
CARBOHYDRATES & SUGARS
Eleanor H
Biological Definitions
Yamminnnn
Function and Structure of DNA
Elena Cade
Lung Structure
Elena Cade
Polysaccharides
Jessica Phillips
A Level Biological Molecules
Camille Bailey
Carbohydrates and Lipids (Saccharides)
Imani :D
Starch, Cellulose and Glycogen
Bee Brittain
1.9 Enzyme Inhibition
Bee Brittain
1.4 Starch, Cellulose and Glycogen
Bee Brittain