Steps to Solving Various Equations

Beschreibung

:D My best resources (Mathematics) Notiz am Steps to Solving Various Equations, erstellt von Watermelon Pop!! am 11/06/2024.
Watermelon Pop!!
Notiz von Watermelon Pop!!, aktualisiert vor 8 Monate
Watermelon Pop!!
Erstellt von Watermelon Pop!! vor mehr als ein Jahr
2
0

Zusammenfassung der Ressource

Seite 1

Quadratic Inequalities

Move everything to one side Factor Find critical numbers Plot critical numbers on number line Test each interval Write sets in interval notation

Seite 2

Rational Inequalities

Move everything to one side Create one fraction Set numerators and denominators equal to 0 Plot critical numbers on number line Test each interval Write each set in interval notation Always use parentheses for denominator critical numbers

Seite 3

Absolute Value Equations

Isolate absolute value. Check that the constant > 0. If the constant is a (-), the answer is NO SOLUTION  or  Ø. If the constant is 0, only use one equation. Solve for + and - of the quantity.

Seite 4

Absolute Inequalities

Isolate absolute value. Check that the constant > 0. If the constant is a (-) and symbol is < or ≤, the answer is NO SOLUTION  or  Ø. If the constant is a (-) and symbol is > or ≥, the answer is (-∞,∞). If the constant is 0, the answer is the critical number. If the symbol is a > or ≥, write two equations (x>k, x<-k) If the symbol is a < or ≤, write one compound inequality.

Seite 5

Two Variable Equations

Find solutions Plot them on a Cartesian plane Sketch the graph

Seite 6

Circle formula

(x-h)²+(y-k)²=r²      ​​​​​​​   ​​​​​​​   ​​​​​​​   ​​​​​​​   ​​​​​​​   ​​​​​​​   ​​​​​​​   ​​​​​​​   ​​​​​​​   ​​​​​​​   ​​​​​​​   ​​​​​​​   ​​​​​​​   ​​​​​​​                                 ​​​​​​​   ​​​​​​​     center-radius form (h,k) is the center point The radius is r If r²>0, the graph is a circle If r²=0, the graph is a point If r²<0, the graph is nonexistent   x²+y²+Dx+Ey+F=0 (where D,E,F are real)                                          general form Convert to center-radius form by completing the square (x+ D/2)² + (y+ E/2)² = -F + (D/2)² + (E/2)²

Seite 7

Function's Domain

Solve for y and look for ± If there is a ±, it is not a function If there is no ±, it is a function POLYNOMIAL = Always (-∞,∞) RADICAL = [radicand, ∞) RATIONAL = set denominator equal to zero, (-∞,k) U (k,∞)

Zusammenfassung anzeigen Zusammenfassung ausblenden

ähnlicher Inhalt

GCSE Maths Symbols, Equations & Formulae
Andrea Leyden
GCSE Maths Symbols, Equations & Formulae
livvy_hurrell
All AS Maths Equations/Calculations and Questions
natashaaaa
GCSE Maths: Algebra & Number Quiz
Andrea Leyden
Mathematics A - Edexcel - GCSE - Paper 1 November 2014 1MA0/1H Theory
Josh Anderson
Solving Simultaneous Equations
Oliver Murphy
Using Formulas
grace0448
Edexcel GCSE Maths Specification - Algebra
Charlie Turner
GCSE Maths: Understanding Pythagoras' Theorem
Micheal Heffernan
AS level Maths Equations to Remember
Gurdev Manchanda
Trigonometry, Equations, Pythagoras theorem
Caitlin Mortlock