| Question | Answer |
| Sinθ | Opposite/Hypotenuse |
| Cosθ | Adjacent/Hypotenuse |
| Tanθ | Opposite/Adjacent |
| Secθ | Hypotenuse/Adjacent |
| Cosecθ | Hypotenuse/Opposite |
| Cotθ | Adjacent/Opposite |
| Reciprocal of Sinθ | 1/cosecθ |
| Reciprocal of Cosθ | 1/secθ |
| Reciprocal of Tanθ | 1/cotθ OR sinθ/cosθ |
| Reciprocal of Secθ | 1/cosθ |
| Reciprocal of Cosecθ | 1/sinθ |
| Reciprocal of Cotθ | 1/tanθ OR cosθ/sinθ |
| Cosec^2(θ) | Cot^2(θ) + 1 |
| Sec^2(θ) | 1+tan^2(θ) |
| Complementary Angles | Sum of two angles add up to 90dg |
| Polar Coordinates (x,y) become | (r,θ) |
| Pythagoras' Theorem | x^2+y^2=r^2 |
| 30dg | pi/6 rad |
| 45dg | pi/4 rad |
| 60dg | pi/3 rad |
| 90dg | pi/2 rad |
| 180 dg | pi |
| 360dg | 2pi |
| 1 rad | 180/pi |
| 1 is equal to | cos^2x+sin^2x |
| Cos(A+B)= | CosACosB - SinASinB |
| Sin(A+B)= | SinACosB+CosASinB |
| Tan(A+B)= | TanA+TanB/1-TanATanB |
| State the definition of A,B,C and D: y=Asin(Bx+C)+D | A- Amplitude, B=Period (2pi/B), C- Horizontal Shift and D= Vertical Shift |
| Sin(2a) | 2sinacosa |
| Cos(2a) in terms of Cos and Sin | Cos^2a-Sin^2a |
| Cos(2a) in terms of Sin | 1-2sin^2a |
| Cos(2a) in terms of Cos | 2Cos^2a-1 |
Want to create your own Flashcards for free with GoConqr? Learn more.