Econometrics I

Description

Graduate-level Econometrics Flashcards
Max Schnidman
Flashcards by Max Schnidman, updated more than 1 year ago
Max Schnidman
Created by Max Schnidman over 5 years ago
30
0
1 2 3 4 5 (0)

Resource summary

Question Answer
Convergence in Probability limnP(|XnX|>ϵ)=0
Almost Sure Convergence P({ω:Xn(ω)X(ω)})=0
Yn=supkn|XkX|p0
P(supkn|XkX|>ϵ)=0
Direction of Convergences A.S.PD
(R)PD
Additional A.S. Convergences k=1P(|XnX|>ϵ)||Xna.s.X
XnpXXn s.t. Xnka.s.X
Convergence in mean of order r limnE[[|XnX|]r]=0
Cauchy Sequence in Probability limn,nP(|XnXm|>ϵ)=0
Borel-Cantelli Lemma A=n=1knAk
n=1P(An)<P(A)=0
Continuous Mapping Theorem XnXg(Xn)g(X)
in probability or A.S.
Convergence in Distribtuion f(x)dFn(x)f(x)dF(x)
Class of Generalized Distributions limxn+GX1...Xn(x1,...,xn)=GX1...Xn1(x1,...,xn1)
limxnGX1...Xn(x1,...,xn)=0
G()0
G()1
Helly-Bray Theorem The class of generalized distributions is compact w.r.t. weak (distributional) convergence.
Asymptotic Tightness ϵ>0 N s.t. infn(Fn(N)Fn(N))>1ϵ
Kinchin's Law of Large Numbers Suppose {Xn}n=1
is i.i.d. sequence of r.v. w. E(Xn)=a
and let Sn=nk=1Xk
Then Snnpa
Central Limit Theorem If 0<σ2<
limnsupx|P(Zn<x)Φ(x)|=0
Zn=n(Sna)σ
Convergence Properties XnpcXndc
XndX,|XnYN|p0,YndX
XnpX,YNpc,(Xn,Yn)d(X,c)
Slutsky Theorem XndX,YNdc
1.Xn+YndX+c
2.XnYndXc
3.Xn/YndX/c
Lindeberg-Feller CLT Condition kni=1E[||Yn,i||2]1{||Yn,i||>ϵ}0
limn1s2nnk=1E[(Xkμk)21{|Xkμk|>εsn}]=0
Delta Method XndX,bn0
g(a+bnXn)g(a)bndXg(a)
Extremum Estimator θ0=argmaxθΘQ(θ)
Q(θ)=Eθ0[g(Y,θ)]=g(y,θ)F(dy,θ0)
Uniform Convergence Pr(limTsupθΘQT(θ)=0)=1QT(θ)a.s.0
limTPr(supθΘQT(θ)<ϵ)=1QT(θ)p0
Assumptions for Extremum Estimation (Convergence in Probability) 1.Θ is compact
2.ˆQT(θ) continuous in Θ
3.ˆQT(θ)pQ(θ)
uniformly 4. Identification (unique global maximum)
Asymptotic Normality 1.δ2ˆQδθδθ exists
2.δ2ˆQ(θT)δθδθpA(θ0)
3.TδˆQ(θ0)δθdN(0,B(θ0))
T(ˆθθ0)dN(0,A(θ0)1B(θ0)A(θ0)1
Assumptions for MLE 1.YF(,θ0)
2.yt i.i.d
3.θΘRp
4. Distribution is dictated by model
MLE Objective Function L(θ)=Eθ0[logf(Y,θ)
Identification Pr(ln(f(Y,θ0)ln(f(Y,θ))>0
Score δln(f(Y,θ)δθ
Gradient of log likelihood Under typical assumptions, Expectation of 0
Information Var(s(θ,y))
Unidentified models have a singular information matrix E[δ2ln(f(Y,θ))δθδθ
if regularity conditions are satisfied
Cramer-Rao Lower Bound Var(T(ˆθθ0))I1θ
Asymptotic Efficiency limTVar(ˆθT)=I1θ
Type I Error Rejecting when the Null is True
Type II Error Not rejecting the null when it is false
Significance Level Pθ(δ(X)=d1)=Pθ(XS1)αθΘH
0<α<1
Size of the Test supθΘhPθ(XS1)
with fixed α
Power Function β(θ)=Pθ(δ(X)=d1)
Test Optimization maxϕ()βϕ(θ)=Eθ[ϕ(X)]
s.t. Eθ[ϕ(X)]α
Simple Distributions Class of distributions with a single distribution
Composite Distributions Class of distributions with multiple distribution
Likelihood Ratio Test P1(x)P0(x)
P-Value Smallest Significance Level at which hypothesis would be rejected given observation ˆp=ˆp(x)=inf{α:xSα}
Normal PDF \frac{1}{\sqrt{2\pi\sigma^2} e^{-\frac{(x - \mu)^2}{2\sigma^2}
Bernoulli PDF q=1p if x=0
p if x=1
Binomial PMF (nk)pkqnk
(nk)=n!k!(nk)!
Uniform PMF 1ba
in support 0 otherwise
Poisson PMF λkeλk!
Cauchy PDF 1πγ[1+(xx0γ)2]
Chebychev's/Markov Inequality P(g(X)r)E[g(X)]r
Holder's Inequality |EXY|E|XY|(E|X|p)1p(E|Y|q])1q
Jensen's Inequality E[g(X)]g(E[X])
Show full summary Hide full summary

0 comments

There are no comments, be the first and leave one below:

Similar

Economics
Emily Fenton
Economics - unit 1
Amardeep Kumar
AN ECONOMIC OVERVIEW OF IRELAND AND THE WORLD 2015/16
John O'Driscoll
Using GoConqr to teach Economics
Sarah Egan
Functions of Money
hannahcollins030
Comparative advantage
jamesofili
GCSE - Introduction to Economics
James Dodd
Market & Technology Dynamics
Tris Stindt
PMP Formulas
Krunk!
Aggregate Supply, Macroeconomic Equilibrium, The Economic Cycle, Economic Growth, Circular Flow and Measuring National Income
Hannah Nad