|
Created by Dominique TREMULOT
almost 2 years ago
|
|
Question | Answer |
A linear /ˈlɪniə(r)/ function | Une fonction affine |
The function ln | The logarithm /ˈlɒɡərɪðəm/ function/the natural logarithm |
A one-to-one function | Une bijection |
The edges of the domain (of a function) | Les bornes de l'ensemble de définition d'une fonction |
What is the input value for which f(x)=0? | Quels sont les antécédents de 0 par f ? |
Remplacer x par 0 | Plug in 0 for x = Plug in x=0 |
The range of a function | The complete set of all possible resulting values of the dependent variable (y- usually)- after we have substituted the domain. |
The graph of f passes through (1−0) | Le graphique de f passe par le point de coordonnées (1\pv0) |
The slope | The ratio of the vertical change between two points- the rise- to the horizontal change between the same two points- the run |
The slope of a line passing through the points (x1−y1) and (x2−y2) is | m=y2−y1x2−x1 |
A line with a positive slope (m>0) | A line which rises from left to right |
A line with a negative slope (m<0) | A line which falls from left to right |
The slope intercept form of a linear function | y=mx+b - m=slope - b=y−intercept |
The point-slope form of the equation of a straight line | y−y1=m(x−x1) |
The slope-intercept form of the equation of a straight line | y=mx+p |
The inverse function of f | La fonction réciproque de f |
limx→∞f(x) | Limit of f(x) as x approaches infinity |
To sketch the graph of f | Donner une allure de la représentation graphique de f |
To graph the function f | Tracer précisément la représentation graphique de f |
The function f is differentiable /dɪfə'renʃieɪbl/ on R | La fonction f est dérivable sur R. |
To differentiate /dɪfəˈrenʃieɪt/ the function f | Dériver le fonction f |
f′ est la dérivée de la fonction f | f′ is the (first) derivative /dɪˈrɪvətɪv/ of the function f |
y′=dydx is the derivative /dɪˈrɪvətɪv/ of y with respect to x | La dérivée de y par rapport à x |
f′(2) est la dérivée de f en 2 | f′(2) is the derivative of f at 2/the derivative of f at x=2/the derivative of f at the point 2 |
f″ est la dérivée seconde de f | f″ is the second derivative /dɪˈrɪvətɪv/ of the function f |
f′(x) | f dash x or the (first) derivative of f with respect to x or f prime of x |
f″(x) | f double-dash x or the second derivative of f with respect to x or f double prime of x |
If y=f(x)- y is called | The image of x under f |
If y=f(x)- y is called- x is called | A preimage /pri:ɪmɪdʒ/ of y under f |
When talking about limits- 0⋅∞ is called | An indeterminate /ɪndɪˈtɜːmɪnət/ form |
Sketch the graph of the function f | Dessine le graphique de la fonction f. |
A piecewise function (or a piecewise-defined function) | Une fonction définie par morceaux |
A constant piecewise function | Une fonction constante par morceaux |
To graph a function | Tracer la représentation graphique d'une fonction |
The function that assigns to each nonnegative integer its last digit | Une fonction qui associe à chaque entier naturel son dernier chiffre |
The function is concave /kɒnˈkeɪv/ up/the function is convex | La fonction est convexe |
The function is concave /kɒnˈkeɪv/ down | La fonction est concave |
The difference quotient of f is the average rate of change of f(x) over the interval [x−x+h] | Le taux d'accroissement de f entre x et x+h |
A limit exists if and only if | Its left-hand and right-hand limits exist and agree |
An invertible /ɪnˈvɜːtəbəl/ function | Une fonction bijective |
If f is an invertible /ɪnˈvɜːtəbəl/ function | Its graph passes the horizontal line test |
The graph of y=x1/n is obtained | By reflecting the graph of y=xn across the line y=x |
csc(x) | 1sin(x) |
sec(x) | 1cos(x) |
cot(x) | 1tan(x) |
If f(x) is continuous at x=a | Then the graph of f(x) can be drawn by hand around x=a without having to lift the pencil from the paper. |
The greatest integer function is denoted by ⌊x⌋ | La fonction partie entière |
A bounded function | Une fonction bornée |
An anti-derivative of the function f | Une primitive de la fonction f |
There are no comments, be the first and leave one below:
Want to create your own Flashcards for free with GoConqr? Learn more.