Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Rational and Exponential Functions

Description

Mind map for Math 2 class
Kaitlyn L
Mind Map by Kaitlyn L, updated more than 1 year ago
Kaitlyn L
Created by Kaitlyn L about 10 years ago
355
0
1 2 3 4 5 (0)

Resource summary

Rational and Exponential Functions
  1. Rational function
    1. A function that is the ratio of two polynomials
      1. This is a rational function because the denominator is divided by the numerator
    2. Horizontal & Vertical Asymptotes of Rational Functions
      1. Vertical asymptotes are vertical lines which correspond to the zeroes of the denominator of a rational function
        1. 1 is the vertical asymptote of the graph because in the donominator x minus 1 is zero so the denominator cannot be divided by the numerator which is one
          1. Also on in the graph the graph approaches 1 on the x-axis but, does not touch it
        2. Horizontal asymptotes are where the graph approaches a value across the y-axis but does not touch it
          1. The horizontal asymptote of this graph is y=2
            1. You can look at the domain to determine the horizontal asymptote
              1. For example if the domain is all x-values other than ± 3/2, and the two vertical asymptotes are at x = ± 3/2.
          2. Exponential function
            1. function in which an independent variable appears in one of the exponents
              1. y=ab^x
            2. Horizontal Asymptotes of Exponential Functions
              1. The horizontal asymptote is where the graph approaches a value across the y-axis but does not touch it
                1. The number that is being added in the equation is the horizontal asymptote of the equations above
              2. End behavior of a graph with asymptotes
                1. the end is the behavior of the graph of f(x) as x approaches positive infinity or negative infinity
                  1. The function on the right side increases and approaches infinity
                    1. The function on the left side decreases and approaches negative infinity
                2. Y-intercept of an exponential function
                  1. The Y-intercept of an exponential function iswhere the function crosses the y-axis
                    1. The x value of a Y-intercept will always be zero so when x is zero the function crosses the y axis
                      1. The Y-intercept of this graph is (0,1)
                  2. Exponential growth function
                    1. The exponential growth function is k>0
                      1. In this function k is known as the growth factor
                        1. Growth factor is the factor by which a number multiplies itself over time
                    2. Exponential decay function
                      1. The exponential decay function is k<0
                        1. In this function k is known as the decay factor
                          1. Decay factor is the factor by which a number divides itself over time
                      2. Growth factor of an exponential function
                        1. When a > 0 and b > 1, the function models growth.
                          1. b is the growth factor and a is the initial amount
                        2. Decay factor of an exponential function
                          1. When a > 0 and 0 < b < 1, the function models decay
                            1. b is the growth factor and a is the initial amount
                          2. Compound Interest Formula
                            1. A represents amount of money accumulated after n years, including interest.
                              1. P represents principal amount (the initial amount you borrow or deposit)
                                1. r represents annual rate of interest (as a decimal)
                                  1. n represents number of times the interest is compounded per year
                                    1. t represents number of years the amount is deposited or borrowed for.
                                    2. Continuous Compounding
                                      1. A = amount after time t
                                        1. P = principal amount (initial investment)
                                          1. r = annual interest rate (as a decimal)
                                            1. t = number of years
                                        2. The continuous compound formula can be used to find the balance at the bank
                                        Show full summary Hide full summary

                                        0 comments

                                        There are no comments, be the first and leave one below:

                                        Similar

                                        Rational and Exponential Functions
                                        rl281599
                                        Rational and Exponential Functions
                                        Kayley Dalton
                                        Respiratory System
                                        Addeana
                                        Food Technology - Functions of ingredients
                                        evie.daines
                                        Algebra Quiz
                                        Norman McBrien
                                        Functions of a Political Party
                                        Phoebe Fletcher
                                        Flash cards on cardiovascular system
                                        offintowonderland
                                        Basic Derivative Rules
                                        Bill Andersen
                                        The brain
                                        Brianna Urena
                                        JavaScript Fundamentals
                                        Andrew Watters