Thermodynamics Unit

Rachel Todd
Mind Map by , created almost 6 years ago

Thermodynamics in AP Chemistry

287
11
0
Tags
Rachel Todd
Created by Rachel Todd almost 6 years ago
Ionic Bondic Flashcards.
anjumn10
Chemistry Quiz General -3
lauren_johncock
The Periodic Table
asramanathan
Biology B1.1 - Genes
raffia.khalid99
Of Mice and Men Plot Overview
Landon Valencia
AP Chemistry Polyatomic Ions
fitzsik194
AP Chemistry
Cathal Darby
Fundamentals in Chemistry
kate.siena
Acids and Bases
Sarah Egan
Acids and Bases quiz
Derek Cumberbatch
Thermodynamics Unit
1 Energy
1.1 Can be TRANSFERED
1.1.1 HEAT
1.1.1.1 Change in system's energy ΔE = q + W
1.1.1.1.1 System
1.1.1.1.1.1 ex) a solution of HCL and another of NaOH were mixed together in a beaker with a stir rod
1.1.1.1.1.1.1 Solution Chem: only the HCl and NaOH melecules (H+, OH-)
1.1.1.1.2 Surrounds
1.1.1.1.2.1 EVERYTHING ELSE
1.1.1.1.3 What Causes Chemical Rxns?
1.1.1.1.3.1 Free Energy ("nature of reactants")
1.1.1.1.3.1.1 ΔG = ΔH - TΔS
1.1.1.1.3.1.1.1 ΔG: the max amount of energy that can be used to do work
1.1.1.1.3.1.1.2 ΔH: energy transferred as heat
1.1.1.1.3.1.1.3 TΔS: energy used to create disorder
1.1.1.1.3.1.1.4 - : thermodynamically favoured (spontaneous)
1.1.1.1.3.1.1.5 + : NOT thermodynamically favoured
1.1.1.1.3.1.1.6 Calculate
1.1.1.1.3.1.1.6.1 #1: Calculate ΔH from calorimtry OR Hess's OR ΔHf; then calculate ΔS using entropy values; and then plug in to find ΔG at a certain temp
1.1.1.1.3.1.1.6.2 #2: Calculate ΔG using ΔGfº values
1.1.1.1.3.1.1.6.2.1 (ΔG = ΣnΔGº (products)−ΣnΔGº (reactants))
1.1.1.1.3.2 Entropy Δs: measure of disorder *more random wanted*
1.1.1.1.3.2.1 2nd law: Entropy of Universe is always increasing
1.1.1.1.3.2.2 ΔS = S(products) - S(reactants)
1.1.1.1.3.2.2.1 ΔSrxn = ΣnSº(products) - ΣnSº(reactants)
1.1.1.1.3.2.2.2 Positive value is WANTED
1.1.1.1.3.3 Enthalpy
1.1.1.1.3.3.1 1st Law of Thermodynamics: cannot be created or destroyed
1.1.1.1.3.3.1.1 EXO
1.1.1.1.3.3.1.1.1 ΔH = q = -
1.1.1.1.3.3.1.2 ENDO
1.1.1.1.3.3.1.2.1 ΔH = q = +
1.1.1.1.3.3.2 can be calculated 4 ways
1.1.1.1.3.3.2.1 #3 Hess's Law
1.1.1.1.3.3.2.1.1 if a rxn is carried in 1 or several steps, the overall change in enthalpy is equal to the sum of the enthalpy changes for each step
1.1.1.1.3.3.2.2 #2 Calorimeter
1.1.1.1.3.3.2.2.1 Heat transfer cannot be directly measured
1.1.1.1.3.3.2.2.1.1 Heat Capacity [kJ/K (or Cº)]
1.1.1.1.3.3.2.2.1.1.1 Specific heat capacity: amount of heat needed to raise the temperature of 1 kg of a substance by 1 k [kJ/kg•K (or Cº)]
1.1.1.1.3.3.2.2.1.1.1.1 ΔH rxn vs Δq rxn [ΔH = Δq/n]
1.1.1.1.3.3.2.2.1.1.1.1.1 total amount of heat lost or gained by a rxn
1.1.1.1.3.3.2.2.1.1.1.1.2 Using stoichiometry
1.1.1.1.3.3.2.3 #1 Bond of Enthalpies
1.1.1.1.3.3.2.3.1 Break bonds NEED energy
1.1.1.1.3.3.2.3.1.1 For the image: A + B need energy to break up; C + D release energy when formed
1.1.1.1.3.3.2.3.2 Form bonds REALEASE energy
1.1.1.1.3.3.2.3.2.1 ΔH = ΣnBE - ΣnBE
1.1.1.1.3.3.2.3.2.1.1 Σ = sum
1.1.1.1.3.3.2.3.2.1.2 n = # of moles
1.1.1.1.3.3.2.3.2.1.3 BE = bond energy *from exp't* values must be given
1.1.1.1.3.3.2.4 #4 Enthalpy of Formation
1.1.1.1.3.3.2.4.1 An arbitrary value that indicates how much heat would be lost/gained from experimental states
1.1.1.1.3.3.2.4.1.1 ΔHº rxn=ΣnΔHºf (products)−ΣnΔHºf (Reactants)
1.1.1.1.3.3.2.4.1.1.1 n: mol
1.1.1.1.3.3.2.4.1.1.2 Most "Hº"'s will be given
1.1.1.1.4 q (+): heat transferred IN
1.1.1.1.4.1 q (-): heat transferred OUT
1.1.1.1.5 w (+): work done ON the system
1.1.1.1.5.1 w (-): work done BY the system
1.1.1.1.6 ΔE is change in PE and KE of particles in a system
1.1.2 WORK W = -PΔV
1.2 PE
1.3 KE
1.3.1 Temperature
1.3.1.1 Conversions
1.3.1.1.1 C = K - 273
1.3.1.1.2 C = (5/9)(Fº - 32)
1.3.1.2 a measure of the average KE of particles in a system
1.3.1.2.1 If KE doubles, the temp doubles as well
1.4 CANNOT BE CREATED OR DESTROYED