Probability Theory

Descripción

V1
Lewis Warne
Mapa Mental por Lewis Warne, actualizado hace más de 1 año
Lewis Warne
Creado por Lewis Warne hace más de 7 años
105
1

Resumen del Recurso

Probability Theory
  1. Probability Space

    Nota:

    • ( \(\Omega\) , \(\mathcal{F}\) , P )
    1. Sigma-Field F

      Nota:

      • \(\sigma\) - field
      1. 3 properties
        1. closed under compliments

          Nota:

          • \( if A \in \mathcal{F} \) then  \(A^c \in \mathcal{F} \)
          1. closed under unions
            1. Contains Null

              Nota:

              •  \( \emptyset  \in \mathcal{F}  \) 
          2. Probability Set

            Nota:

            • \(\Omega\)
            1. set of all possible outcomes
            2. Probability Measure

              Nota:

              • P on ( \(\Omega\) , \(\mathcal{F}\) )
              1. two properties
                1. Between zero and one

                  Nota:

                  • P(null set) = 0, P(solution set) = 1
                  1. Identity
                    1. if An is collection of disjoint members of F, sum of proabability is sum of untion
                      1. Given Disjoint events, Sum of probability of each events = Probability of Union
                  2. 4 Properties, Basic Prob Math works
                    1. Prob of compliments add up to 1

                      Nota:

                      • \( P(A^c) = 1 - P(A) \)
                      1. If B is super set of A then P(B) = P(A) + P( B\A) >= P(A)
                        1. P( A U B) = P(A) + P(B) - P( A intersect B)
                          1. Complex union math, proof by induction
                        2. Conditional Probability
                          1. Based on total number of events

                            Nota:

                            • \( \frac{N(A \cap B}{N(B)} \)
                            1. P(A given B) = P(A intersection B) / P(B)
                              1. Lemma

                                Nota:

                                • \( P(A) = P(A \mid B)P(B) + P(A \mid B^c)*P(B^c) \) Question, prove above
                              2. Independance
                                1. Def.

                                  Nota:

                                  • \( P(A \cap B) = P(A)(B) \)
                                Mostrar resumen completo Ocultar resumen completo

                                Similar

                                Maths Probability
                                Will Thorpe
                                Probability S1
                                Alice Kimpton
                                Maths Exponents and Logarithms
                                Will Thorpe
                                GCSE Maths: Statistics & Probability
                                Andrea Leyden
                                New GCSE Maths required formulae
                                Sarah Egan
                                Counting and Probability
                                Culan O'Meara
                                Mathematics Prep for maths exam
                                Lulwah Elhariry
                                Probability
                                Dami Alvarez
                                Teoría de Conteo
                                ISABELLA OSPINA SAENZ
                                Probability
                                Ravindra Patidar
                                Probability & Statistics
                                Rohit Gurjar