Resolución de sistemas de ecuacion

Description

Mind Map on Resolución de sistemas de ecuacion, created by VICENTE SANCHO CABRERIZO on 05/10/2017.
VICENTE SANCHO CABRERIZO
Mind Map by VICENTE SANCHO CABRERIZO, updated more than 1 year ago
VICENTE SANCHO CABRERIZO
Created by VICENTE SANCHO CABRERIZO almost 7 years ago
188
0

Resource summary

Resolución de sistemas de ecuacion
  1. En matemáticas, un sistema de ecuaciones algebraicas es un conjunto de dos o más ecuaciones con varias incógnitas que conforman un problema matemático que consiste en encontrar los valores de las incógnitas que satisfacen dichas operaciones. Hay 3 sistemas...
    1. Redución
      1. Se preparan las dos ecuaciones, multiplicándolas por los números que convenga. La restamos, y desaparece una de las incógnitas. Se resuelve la ecuación resultante. El valor obtenido se sustituye en una de las ecuaciones iniciales y se resuelve. Los dos valores obtenidos constituyen la solución del sistema.
        1. EJEMPLO REDUCION
          1. X + Y - 9 = 0... 3X + Y + 6 = 0... -2 x -15 = 0... -2 x 15... x = - 15 2 = - 7'5... -7'5 + 4 - 9 = 0... 4= 9 + 7'5 = 16'5... x + y - 9 = 0... - 3 x - 4 - 6 = 0... -2 x -15 =0
      2. Igualación
        1. Se despeja la misma incógnita en ambas ecuaciones. Se igualan las expresiones, con lo que obtenemos una ecuación con una incógnita. Se resuelve la ecuación. El valor obtenido se sustituye en cualquiera de las dos expresiones en las que aparecía despejada la otra incógnita. Los dos valores obtenidos constituyen la solución del sistema.
          1. EJEMPLO IGUALACION
            1. - X 9 = - 3 X - 6... 2 x = - 15... y= -7'5 + 9 = 16'5... 2x = - 15... x = - 7'5
        2. Sustitución
          1. Se despeja una incógnita en una de las ecuaciones. Se sustituye la expresión de esta incógnita en la otra ecuación, obteniendo un ecuación con una sola incógnita. Se resuelve la ecuación. El valor obtenido se sustituye en la ecuación en la que aparecía la incógnita despejada. Los dos valores obtenidos constituyen la solución del sistema.
            1. EJEMPLO REDUCCION
              1. X + 3 y - 9 = 0... 3 x + 2 y + 6 = 0... x = - 3 y + 9... 3 (- 3 y + 9) + 2 y + 6 = 0... -9 y + 27 + 2 y + 6 = 0... - 9 y + 2 y = 74... + 27 + 6 = 33
        Show full summary Hide full summary

        Similar

        Project Management Integration
        craigmag
        C2 - Formulae to learn
        Tech Wilkinson
        OCR AS Biology - Enzymes
        Chris Osmundse
        GCSE Statistics
        Felix Ulrich-Oltean
        Sociology- Family and Households Flashcards
        Heloise Tudor
        Biology F212 - Biological molecules 1
        scarlettcain97
        GCSE AQA Chemistry Atomic Structure and Bonding
        mustafizk
        Unit 5: Nuclear and Thermal Physics
        Michael Priest
        The Tempest
        Dirk Weibye
        World War II Notebook
        jenniferfish2014
        Management 1. PT (3MA101) - 1. část
        Vendula Tranová