MACROMOLÉCULAS

Description

TRABAJO DE MACROMOLÉCULAS
realsekno
Slide Set by realsekno, updated more than 1 year ago
realsekno
Created by realsekno over 8 years ago
143
0

Resource summary

Slide 1

         MACROMOLÈCULAS 
    QUIMICA IIPROFESORA: VERÒNICA ÀGUILA ZENTENOINTEGRANTES: MEDERO LÒPEZ ABRAHAM       N/L: 32MEZA MARTÌNEZ LEONARDO ALI     N/L: 33GRUPO: 3        TURNO: MATUTINO

Slide 2

    INTRODUCCIÒN
    Todos los seres vivos estamos constituidos de agua y moléculas organicas complejas llamadas macromoleculas , y se les conoce así porque son moleculas cuya masa molecular es superior a los 10 000 uma (unidad de masa atomica ). Sin embargo ,podemos encontrar moleculas de hasta un millon de uma. Estas moleculas estan formadas por repeticiones de atomos , constituyendo asi un conjunto conocido como polimero ( del griego polys que significa muchos y meros partes).A la unidad repetitiva se le conoce como monomero.

Slide 3

    CARBOHIDRATOS 
    Los glúcidos son compuestos formados en su mayor parte por átomos de carbono e hidrógeno y, en una menor cantidad, de oxígeno. Tienen enlaces químicos difíciles de romper de tipo covalente, pero que almacenan gran cantidad de energía, que es liberada cuando la molécula es oxidada. En la naturaleza son un constituyente esencial de los seres vivos, formando parte de biomoléculas aisladas o asociadas a otras como las proteínas y los lípidos, siendo los compuestos orgánicos más abundantes en la naturaleza. Los glúcidos cumplen dos papeles fundamentales en los seres vivos. Por un lado son moléculas energéticas de uso inmediato para las células (glucosa) o que se almacenan para su posterior consumo (almidón y glucógeno); 1g proporciona 4 kcal. Por otra parte, algunos polisacáridos tienen una importante función estructural ya que forman parte de la pared celular de los vegetales (celulosa) o de la cutícula de los artrópodos.
    Caption: : ESTRUCTURA QUIMICA DE LA GLUCOSA Y LA FRUCTOSA

Slide 4

    ENLACES GLUCOSIDICOS 
    En el ámbito de los glùcidos, el enlace glucosídico es aquel mediante el cual un glúcido se enlaza con otra molécula, que puede ser o no ser otro glúcido. En caso de unirse entre sí dos o más monosacàridos formando disacàridos  o polisacàridos utilizando un átomo de oxígeno como puente entre ambas moléculas (un éter), su denominación correcta es enlace O-glucosídico. Análogamente, también existen enlaces S, N y C glucosídicos.
    Caption: : Esquema del enlace O-glucosídico entre dos monosacáridos de glucosa.

Slide 5

    LIPIDOS
    Los lípidos son moléculas muy diversas; unos están formados por cadenas alifáticas saturadas o insaturadas, en general lineales, pero algunos tienen anillos (aromáticos). Algunos son flexibles, mientras que otros son rígidos o semiflexibles hasta alcanzar casi una total Flexibilidad mecánica molecular; algunos comparten carbonos libres y otros forman puentes de hidrógeno. La mayoría de los lípidos tiene algún tipo de carácter no polar, es decir, poseen una gran parte apolar o hidrofóbico ("que le teme al agua" o "rechaza el agua"), lo que significa que no interactúa bien con solventes polares como el agua, pero sí con la gasolina, el éter o el cloroformo. Otra parte de su estructura es polar o hidrofílica ("que tiene afinidad por el agua") y tenderá a asociarse con solventes polares como el agua; cuando una molécula tiene una región hidrófoba y otra hidrófila se dice que tiene carácter de anfipático. La región hidrófoba de los lípidos es la que presenta solo átomos de carbono unidos a átomos de hidrógeno, como la larga "cola" alifática de los ácidos grasos o los anillos de esterano del colesterol; la región hidrófila es la que posee grupos polares o con cargas eléctricas, como el hidroxilo (–OH) del colesterol, el carboxilo (–COOH–) de los ácidos grasos, el fosfato (–PO4–) de los fosfolípidos.

Slide 6

                                 PROTIDOS
    Las proteínas (del francés: protéine, y este del griego' πρωτεῖος, proteios, ‘prominente’, ‘de primera calidad’) o prótidos son moléculas formadas por cadenas lineales de aminoácidos. Por sus propiedades físico-químicas, se pueden clasificar en proteínas simples (holoproteidos), formadas solo por aminoácidos o sus derivados; conjugadas (heteroproteidos), formadas por aminoácidos acompañados de sustancias diversas, y proteínas derivadas, sustancias formadas por desnaturalización y desdoblamiento de las anteriores.Las proteínas son necesarias para la vida, sobre todo por su función plástica (constituyen el 80 % del protoplasma deshidratado de toda célula), pero también por sus funciones biorreguladoras (forman parte de las enzimas) y de defensa (los anticuerpos son proteínas). Desempeñan un papel fundamental para la vida y son las biomoléculas más versátiles y diversas. Son imprescindibles para el crecimiento del organismo y realizan una enorme cantidad de funciones diferentes.Las proteínas de todos los seres vivos están determinadas mayoritariamente por su genética (con excepción de algunos péptidos antimicrobianos de síntesis no ribosomal), es decir, la información genética determina en gran medida qué proteínas tiene una célula, un tejido y un organismo.Las proteínas se sintetizan dependiendo de cómo se encuentren regulados los genes que las codifican. Por lo tanto, son susceptibles a señales o factores externos. El conjunto de las proteínas expresadas en una circunstancia determinada es denominado proteoma.

Slide 7

Slide 8

    ENLACE PEPTIDICO
    El enlace peptídico es un enlace entre el grupo amino (–NH2) de un aminoácido y el grupo carboxilo (–COOH) de otro aminoácido. Los péptidos y las proteínas están formados por la unión de aminoácidos mediante enlaces peptídicos. El enlace peptídico implica la pérdida de una molécula de agua y la formación de un enlace covalente CO-NH. Es, en realidad, un enlace amida sustituido.Podemos seguir añadiendo aminoácidos al péptido, pero siempre en el extremo COOH terminal. Para nombrar el péptido se empieza por el NH2 terminal por acuerdo. Si el primer aminoácido de nuestro péptidofuera alanina y el segundo serina tendríamos el péptido alanil-serina.
    Caption: : Formación de un dipéptido por la unión de dos aminoácidos mediante un enlace peptídico.

Slide 9

                           ACIDOS NUCLEICOS
    Los ácidos nucleicos son grandes polímeros formados por la repetición de monómeros denominados nucleótidos, unidos mediante enlaces fosfodiéster. Se forman, largas cadenas; algunas moléculas de ácidos nucleicos llegan a alcanzar tamaños gigantescos, con millones de nucleótidos encadenados. Los ácidos nucleicos almacenan la información genética de los organismos vivos y son los responsables de la transmisión hereditaria. Existen dos tipos básicos, el ADN y el ARN. El ácido desoxirribonucleico, abreviado como ADN, es un ácido nucleico que contiene las instrucciones genéticas usadas en el desarrollo y funcionamiento de todos los organismos vivos conocidos y algunos virus, y es responsable de su transmisión hereditaria. El ácido ribonucleico (ARN o RNA) es un ácido nucleico formado por una cadena de ribonucleótidos. Está presente tanto en las células procariotas como en las eucariotas, y es el único material genético de ciertos virus (virus ARN). El ARN celular es lineal y de hebra sencilla, pero en el genoma de algunos virus es de doble hebra.

Slide 10

    IMPORTANCIA 
    Las macromoleculas se clasifican en naturales y sinteticas. Las primeras son encontradas en los seres vivos, mientras que las segundas son todas aquellas moleculas sintetizadas por el hombre para su bienestar. La importancia de las macromoleculas en el cuerpo humano es vital debido a que gracias a ellas el organismo realiza una gran cantidad de funciones para su desarrollo y supervivencia. Por ejemplo : correr, estudiar,platicar y caminar son de las muchas actividades que podemos realizar siempre y cuando tengamos energía en nuestro organismo, la cual es obtenida mediante el metabolismo de los alimentos.

Slide 11

    POLIMEROS SINTETICOS (ADICION)
    Ocurre en monómeros que tienen al menos un doble enlace, y la cadena polimérica se forma por la apertura de este, adicionando un monómero seguido de otro. El polímero es sintetizado por la adición de monómero insaturado a una cadena de crecimiento. Por este procedimiento se sintetizan el polietileno (PE), y las distintas poli olefinas, polímeros vinílicos y acrílicos; los poliésteres o polióxidos, como el POM. La polimerización por adición se puede esquematizar con la serie de reacciones en cadena:1. Iniciación I-I → 2I* (1) 2. Crecimiento 2I* +CH2 = CHX →I-CH2-C*HX (2) 3. Crecimiento R*n + monómero → R*n+1 (3)4. Terminación R*n + R*P → Pn+p (4)
    Ocurre en monómeros que tienen al menos un doble enlace, y la cadena polimérica se forma por la apertura de este, adicionando un monómero seguido de otro. El polímero es sintetizado por la adición de monómero insaturado a una cadena de crecimiento. Por este procedimiento se sintetizan el polietileno (PE), y las distintas poli olefinas, polímeros vinílicos y acrílicos; los poliésteres o polióxidos, como el POM. La polimerización por adición se puede esquematizar con la serie de reacciones en cadena: 1. Iniciación I-I → 2I* (1)  2. Crecimiento 2I* +CH2 = CHX →I-CH2-C*HX (2)  3. Crecimiento R*n + monómero → R*n+1 (3)  4. Terminación R*n + R*P → Pn+p (4)
    Caption: : 8 Estructura y usos de algunos polímeros de adición

Slide 12

    POLIMEROS SINTETICOS (CONDENSACION)
    En la polimerización por condensación en los monómeros se unen con la eliminación simultanea de átomos o grupos de átomos mas pequeños se obtiene a partir del enlace entre monómeros que poseen al menos dos grupos reaccionantes (monómeros bi, tri, etc.) y que reaccionan con separación de algún producto de bajo peso molecular.  Algunos polímeros típicos de condensación son: el nailon, los poliuretanos y los poliésteres.

Slide 13

    USO ADECUADO DE POLIMEROS
    Unos de los materiales que se hacen con macromoléculas son por ejemplo materiales biodesintegrables, que son mezclas de bioplásticos con polímeros sintéticos no biodegradables, que por acción de los microorganismo se pueden desintegrar, convirtiéndose básicamente en agua y dióxido de carbono sólo las macromoléculas de bioplástico, mientras que las macromoléculas de alto peso molecular del polímero sintético permanecen intactas. Desde el punto de vista de la "contaminación", se percibe que son una mejora al problema, por dejar ese residuo sintético sin degradar. Para el uso de macromoléculas existe una ley que prohíbe el uso incorrecto o que dañe al ser humano o la naturaleza.  

Slide 14

    MATERIALES (NUEVA TECNOLOGIA)
    Caption: : Los materiales cerámicos son sólidos inorgánicos que normalmente son duros y estables a altas temperaturas. En general son aislantes eléctricos. Los materiales cerámicos tienen una variedad de formas químicas, incluyendo los óxidos, carburos, nitruros, silicatos y aluminatos.
    Caption: : El cristal líquido es un tipo especial de estado de agregación de la materia que tiene propiedades de las fases líquida y sólida. Dependiendo del tipo de cristal líquido, es posible, por ejemplo, que las moléculas tengan libertad de movimiento en un plano, pero no entre planos, o que tengan libertad de rotación, pero no de traslación.

Slide 15

Slide 16

    Caption: : El tren experimental "magneto-levitante" (maglev) MLX01 actualmente en etapa de pruebas en el Instituto de Investigaciones Técnicas en Vías (Railway Technical Research Institute) de Japón, utiliza superconductores de baja temperatura “modelo antiguo” que requieren helio líquido como refrigerante. Los superconductores de alta temperatura pueden utilizar nitrógeno líquido, el cual es más barato, más abundante, y más fácil de manejar
Show full summary Hide full summary

Similar

MACROMOLECULAS NATURALES Y SINTETICAS
Aline Rosas
Macromoleculas , polimeros y monomeros
Diana Aguilar
MACROMOLECULAS
ingrid ramirez alvarez
MACROMOLECULAS
Fanny Santiago
Principales biomoleculas
BRIANDA MAYELA HERNANDEZ CONTRERAS
3.3 MACROMOLECULAS, POLIMEROS, Y MONOMEROS
Erick Martinez J
Moleculas y Macromoleculas
NyokMc
3.3 MACROMOLECULAS, POLÍMEROS Y MONÓMEROS
Valeria Lezama
organización de los seres vivos
Valeria Sandoval Vega
MACROMOLÉCULAS, POLÍMEROS Y MONÓMEROS
Marisol NG