Grundlagen (Mengenlehre und Logik)

Maximilian Gillmann
Flashcards by , created over 5 years ago

Mathematik für Informatiker I (Grundlagen (Mengenlehre und Logik)) Flashcards on Grundlagen (Mengenlehre und Logik), created by Maximilian Gillmann on 03/31/2014.

74
2
0
Maximilian Gillmann
Created by Maximilian Gillmann over 5 years ago
Relationen
Maximilian Gillmann
Komplexe Zahlen
Maximilian Gillmann
Bilinearform, Skalarprodukte und Orthogonale Abbildungen
Maximilian Gillmann
Unit 1: Media production & regulation
c.gale
Types of Learning Environment
Brandon Tuyuc
Vektorräume
Maximilian Gillmann
Grundlagen Vektorraum
Maximilian Gillmann
Abbildungen zwischen Mengen
Maximilian Gillmann
Question Answer
Nenne die 3 Beweisarten und wie sie beschrieben werden. Direkter Beweis: a => b Indirekter Beweis: ¬b => ¬a Beweis durch Widerspruch: ¬b und a => Widerspruch
Nenne das Gegenteil des All Qunators. Es existiert mindestens ein x für das die gegenteilige Aussage gilt.
Nenne das Gegenteil der Exist Quantors. Für alle x gilt die gegenteilige Aussage.
Wie kann man ausdrücken das *genau* ein x existiert. png__40_.png (image/png)
Wie wird ein geordnetes Paar noch bezeichnet? Tupel
Was ist das Kartesische Produkt? Verknüpfung zweier Mengen über jeweilige Tupel. {1}x{1,2} = {(1,1),(1,2)}
Was gibt die Kardinalität an und welchen Wert hat sie bei der Nullmenge? Anzahl der Elemente #Nullmenge = 0
Was ist eine echte Teilmenge? Teilmenge, aber #A ungleich #B
Wann ist A Teilmenge von B? Wenn jedes Element von A in B liegt.
Wann ist A = B? Wenn A Teilmenge von B und B Teilmenge von A ist.
Welche 3 Operationen gibt es auf Mengen? Wie könnte man diese logisch beschreiben? Durchschnitt: A und B Vereinigung: A oder B Differenz: A ohne B
Was ist ein Komplement? png__41_.png (image/png)
Was ist eine Abbildung? Eine Vorschrift, die jedem Element in A genau ein Element in B zuordnet.
Was sind Definitions- und Wertemengen? A -> B A ist Definitionsmenge B ist Wertemenge
Nenne alternative Begriffe für Definitionsmenge und Wertemenge. Ausgangsmenge Zielmenge
Wann ist eine Abbildung wohldefiniert? Jedes Element aus A wird einmal abgebildet.
Was ist die Identität? Eine Abbildung bei dem jedes Element auf sich selbst abgebildet wird.
Was ist eine Umkehrabbildung? Abbildung von A nach B die bijektiv ist, hat eine Umkehrabbildung von B nach A.
Was ist injektivität? Nenne zusätzlich ein Beispiel. Jedem Wert aus A wird ein Wert aus B zugeordnet, B wird nicht vollständig abgedeckt.
Was ist Surjektivität? Jedes Element in B hat ein Urbild in A, dabei können die Urbilder verschiedener Elemente in B gleich sein.
Was ist Bijektivität? Jedes Element in A hat genau ein Element in B. Beispiel: Eine Linie, die jedem x ein y zuordnet.
png__42_.png (image/png) Bild: 4,5 Urbild: 1 und 2, 6 hat kein Urbild
Nenne die vier Eigenschaften von Relationen. Wann sind diese erfüllt? reflexiv: (a,a) in R symmetrisch: (a,b) in R => (b,a) in R antisymmetrisch: (a,b) und (b,a) in R <=> a = b transitiv: (a,b) und (b,c) in R => (a,c) in R
Was sind die Eigenschaften einer Äquivalenzrelation? Reflexiv Symmetrisch Transitiv
Was sind die Eigenschaften einer Ordnungsrelation? Reflexiv Antisymmetrisch Transitiv
Welche Menge beschreibt die Äquivalenzklasse? Menge aller Elemente aus A für die eine Äquivalenzrelation definiert ist.
Was ist eine Quotientenmenge? Menge aller Äquivalenzklassen.
Nenne ein Beispiel um Äquivalenzrelation, -klasse und Quotientenmenge zu Verknüpfen. Stichwort: Schule a~b := a in der selben Klasse wie b Jede Klasse ist Äquivalenzklasse Menge der Klassen ist Quotientenmenge
Wann ist eine Ordnungsrelation total, wann partiell? total: je zwei Elemente sind miteinander vergleichbar partiell: nicht alle Elemente sind paarw. miteinander vergleichbar